SU an 1715856 A1

(51)5 C 21 C 1/10

FOCYДАРСТВЕННЫЙ HOMUTET

ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ

ПРИ ПННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 4807273/02

(22) 28.03.90

(46) 29.02.92. Bion. № 8

(71) Белорусский политехнический институт

(72) Е.И. Шитов, М.М. Бондарев, В.М. Михайловский и Б.А. Коняев

(53) 621.745.56 (088.8)

(56) Захарченко Э.В. и др. Отливки из чугуна с шаровидным и вермикулярным графитом. Киев: Наукова думка, 1986, с. 204.

Высококачественные чугуны для отливок./Под ред. Н.Н. Александрова, М.: Машиностроение, 1982, с. 193.

(54) СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ВЕР-МИКУЛЯРНЫМ ГРАФИТОМ

(57) Изобретение относится к литейно-

2

му производству. Цель изобретения повышение термостойкости, окалиностойкости и фрикционных свойств пульпы. Предложенный способ получения чугуна с вермикулярным графитом включает расплавление шихты в вагранке, перегрев его в миксере по 1350-1450°С, выпуск металла в раздаточный ковш, вермикуляризирующую обработку расплава в ковше магнийсодержащей лигатурой, гомогенизацию расплава в течение 5-8 мин, удаление шлака и последующую вторичную обработку в разливочном ковше. При этом вторичную обработку осуществляют металлической сурьмой при расходе 0.04-0.08% от массы обрабатываемого металла с последующей разливкой полученного чугуна в течение 3-7 мин. 4 табл.

Изобретение относится к области литейного производства, а именно к способам производства высокоуглеро-дистых сплавов железа с компактной формой графита, и может быть использовано для изготовления отливок, работающих в условиях трения и фрикционных нагрузок.

Цель изобретения - повышение термостойкости, окалиностойкости и фрикционных свойств отливок при стабильном получении вермикулярной формы графита в расплаве ваграночной плавки.

Пример. Для сравнительных испытаний известного и предлагаемого способов получения чугуна с вермику-лярным графитом чугун выплавляют в вагранке с кислой футеровкой произво-

дительностью 1 т/ч. В качестве шихтовых материалов используют литейный чугун, возврат серого чугуна, ферросилиций, ферромарганец. После расплавления шихты расплав переливают в индукционную печь МТП 102 емкостью тигля 150 кг и перегревают до 1350-1450°С. Составы исследуемых чугунов приведены в табл.1.

Модифицирование производят в раздаточном ковше емкостью 100 кг лигатурой марки ЖКМК-1РА состава: 49,0% кремния; 8,1% магния; 7,8% кальция; 4,34% РЗМ; 1,48% алюминия, остальное железо. После чего производят гомогенизацию расплава в течение 5-8 мин, удаление шлака. Вторич-

1715856 1715856

15

55

ное модифицирование проводят в разливочном ковше емкостью 10 кг. В качестве вторичного модифицирующего элемента используют сурьму Су2, которую в раздробленном виде вводят при наполнении ковша. Заливку чугуна в форму осуществляют в течение 3-7 мин.

Для исследования структуры и свойств чугуна, полученного по предлагаемому способу, используют добавки ЖКМК-1РА и сурьмы на нижнем, среднем и верхнем уровне, а также ниже нижнего и выше верхнего уровней добавок.

Исследования механических свойств проводят по существующим стандартам на методы испытаний на изгиб, на комплекте из трех литых образцов диаметром 30 и длиной 340 мм, твердость по Бриннелю, на растяжение.

Испытания на термостойкость проводят на образцах диаметром 30 и толщиной 5 мм, собранных в пакет, которые периодически погружают в ванну с расп-25 лавом свинца при 720±5°С в течение 45 с, озлаждают в проточной воде 8-10 с и после этого обдувают сжатым воздухом 40-60 с. После охлаждения в воде температура поверхности образцов 140-160°С. Термостойкость оценивают по количеству циклов до разрушения образцов, количеству трещин по краю шлифа в зависимости от числа циклов.

Испытания на окалиностойкость проводят периодическим взвешиванием образцов — цилиндров диаметром 10 и высотой 20 мм. Испытания проводят в электрической муфельной печи при 820°С. Окалиностойкость оценивают по удельному приросту массы образцов (г/м²) периодически после 10 ч выдержки. Взвешивание образцов проводят на аналитических весах ВЛА-200 /г/м) с точностью ±0,1 мг.

Испытания на ростоустойчивость проводят на образцах - цилиндрах диаметром 20 и длиной 100 мм по торцам со штифтами из коррозионной стали X18H10T. Температура испытаний 820°C. 50 Рост чугуна оценивают путем измерения длины образцов с помощью микрометра периодически после 10 ч выдержим.

Антифрикционные свойства изучают на машине трения МТ-2М. Технологические параметры, структура, механические и эксплуатационные свойства чугунов приведены в табл.2-4.

Анализ полученных результатов позволяет судить о том, что предла-гаемый способ обеспечивает требуемую степень вермикуляризации графита и структуру металлической основы и как следствие определяет более высокий уровень механических и эксплуатаци-онных характеристик по сравнению с известным способом получения ЧВГ.

Технологические параметры способа получения ЧВГ обусловлены следующим.

Использование лигатуры ЖКМК-1РА позволяет модифицировать чугун при $1350-1450\,^{\circ}\text{C}$. Ниже $1350\,^{\circ}\text{C}$ происходит ошлаковывание лигатуры, выше $1450\,^{\circ}\text{C}$ - повышенный угар элементов.

Наличие в составе лигатуры РЗМ. кальция, магния и алюминия позволяет стабилизировать получение вермикулярной формы графита. Нижний предел величины добавки лигатуры (0.8 мас.%) ограничен вероятностью присутствия в структуре графита пластинчатой формы. Добавка модификатора свыше 1,2 мас.% при низком содержании се-30 ры в расплаве (менее 0,06 мас.%) может привести к появлению графита шаровидной формы (более 20%), что снижает термостойкость и окалиностойкость. Время выдержки расплава после модифицирования в течение 5-8 мин проводят с целью гомогенизации расплава. При выдержке менее 5 мин увеличивается вероятность неполного всплытия в шлак продуктов реакции модификатора с жидким металлом, выдержки более 8 мин малоэффективным ввиду практически полной очистки расплава.

Металлическая сурьма является сильным перлитизирующим элементом. Ее ввод в расплав на II стадии модифицирования после обработки расплава лигатурой ЖКМК-1РА продиктован более полным усвоением сурьмы, так как при совместном вводе с лигатурой она активно взаимодействует с кислородом и серой, содержащимися в жидком металле с образованием Sb₂O₃ и Sb₂ . При вводе сурьмы в сплав она способствует переохлаждению расплава, изменяет форму и размеры графита. Общее число включений графита с добавкой сурьмы увеличивается, что благоприятно сказывается на повышении

износостойкости. Верхний предел добавки сурьмы (0,08 мас.%) ограничен малым ростом перлитизирующего эффекта, а нижний (0,04 мас.%) - отсутствием эффекта повышения износостойкости. Повышение износостойкости связано с тем, что сурьма входит в состав фосфидной эвтектики, повышая ее миктротвердость в 1,5 раза (с 580 до 730 кг/мм²). Фосфидная эвтектика располагается по границам зерен в виде разорванной сетки. При этом структура чугуна соответствует принципу Шарпи, при котором сплав обладает пот 15 вышенной износостойкостью.

Разливка расплава в течение 3 - 7 мин обеспечивает сохранение модифицирующего воздействия сурьмы на структуру чугуна.

Оптимальное количество ЖКМК-1РА составляет 1 мас.%, сурьмы 0,06 мас.% Предлагаемый способ целесообразно использовать для получения кокилей из ваграночного чугуна, а также дета- 25 лей фрикционно-поршневой группы.

Ожидаемый экономический эффект от внедрения на Слуцком заводе "Эмальпосуда" составит 180 тыс.руб.

Формула изобретения

Способ получения чугуна с вермикулярным графитом, включающий расплавление шихты в вагранке, перегрев его в миксере до $1350-1450^{\circ}$ С, выпуск металла в раздаточный ковш, вермикуляризирующую обработку расплава в ковше магнийсодержащей лигатурой, гомогенизацию расплава в течение 5-8 мин, удаление шлака и последующую вторичную обработку в разливочном ковше, отличающийся тем, что, с целью повышения окалиностойкости, термостойкости и фрикционных свойств чугуна, вторичную обработку осуществляют металлической сурьмой при расходе 0,04-0,08% от массы обрабатываемого металла с последующей разливкой полученного чугуна в течение 3 -7 мин.

Таблица 1

Способ полу- чения чугуна с вермикуляр- ным графитом	Уровень тех-	Химический состав чугуна, мас.%							
	нологичес- ких парамет- ров	С	Si	Mn	S	P			
Известный Предлагаемый	Средний Нижний Средний Верхний	3,52 3,45 3,5 3,6	2,45 1,50 1,75 2,1	0,6 0,55 0,52 0,5	0,09 0,08 0,09 0,085	0,035 0,03 0,04 0,04			
	Ниже нижне-	3,45	1,45	0,6	0,09	0,035			
•	него него	3,7	2,5	0,6	0,085	0,03			

Таблица 2

Способ обра⇒ ботки чугуна	Уровень техноло- гических парамет- ров	Temmepa Typa pacmna- Ba, °C	Величи- на до- бавки ЖКМК-1РА, %	Время вы- держки расплава после пер- вой обра- ботки, мин	Температу- ра легиро- вания сурь⊷ мой,°С	Величина добавки сурьмы, %	Величина добавки ФС75,%	Время раз- ливки пос- ле веода сурьмы, мин
Известный Предлагае-	Средний	1420	0,8	6,0	-	-	0,7	-
мый	Нижний	1350	0,8	5	1300	0,04		3
•	Средний	1400	1,0	6,0	1310	0,06	. -	5
	Верхний Ниже ниж-	1450	1,2	8	1320	0,08	. -	7 -
•	него Выше верх-	1320	0,5	3	1290	0,02	-	2
	него	1480	1,4	12	1330	0,10	-	9

Таблица 3

Способ обра- ботки чугуна	Уровень тех- нологических параметров	Струк	Структура		Механические свойства			
		кол-во перли- та, %	кол∵во ферри- та, %	твер- дость, НВ	временное сопротив- ление разрыву, МПа	временное сопротивле- ние изгибу, МПа		
Известный Предлагае-	Средний	40	60	180	400	930		
мый	Нижний	65	35	217	430	1020		
	Средний	70	30	229	460	1010		
	Вержний Ниже ниж-	80	20	242	500	995		
	него Выше верх-	60	40	197	415	1015		
1	HeLO	80	20	262	540	970		

/ Таблица 4

Способ об-	Уровень тех-	Термостой- кость, кол-во циклов до разрушен.	Окалиностойкость, удельный прирост массы, г/мм², в течение, ч					
работки чугуна	нологичес- ких парамет- ров							
			20	40	60	08	100	
Известини Предлагае-	Средний	215	60	120	160	200	230	
мый	йинжиН	650	11	16	25	31	47	
	Средний	510	14	25	32	40	50	
	Верхний	495	18	36	48	61	77	
	Ниже нижне-						•	
	го	295	36	68	90	110	132	
	Выше верх- него	360	20	42	56	70	80	

·	Продолжение табл							
Способ об- работки чугуна	1 -	/стойчи течени	Износ, г/м².ч	Коэффи- циент трения				
	20	40	60	80	100			
Известный Предлагае- мый	0,40	0,46	0,64	0,82	1,00	2,34	0,24	
	0,36 0,29 0,21	0,39 0,31 0,29	0,53 0,49 0,41	0,72 0,63 0,59	0,91 0,88 0,80	1,48 1,08 0,823	0,16 0,12 0,09	
	0,54	0,66	0,78	0,90	1,00	2,066	0,17	
	0,24	0,31	0,45	0,67	0,83	0,85	0,11	