В ближайших планах БАЗа — повышение технических характеристик автомобилей в рамках нового семейства автомобилей «Вощина-2». Новое семейство будет расширено за счет освоения шасси с колесной формулой 10×10 и 12×12 , которые отсутствовали в армейском семействе «Вощина-1». Верхний предел грузоподъемности шасси будет повышен до 40 т.

Отдельное внимание при разработке нового семейства будет уделено бортовой информационно-управляющей системе и разработке типоразмерного ряда гидромеханических коробок передач.

Итогом сотрудничества Министерства обороны Российской Федерации и автомобильных заводов является план по закупке для армии до 2015 г. до 150 тыс. единиц автомобильной техники.

Методы снижения токсичности отработавших газов дизельных автомобилей

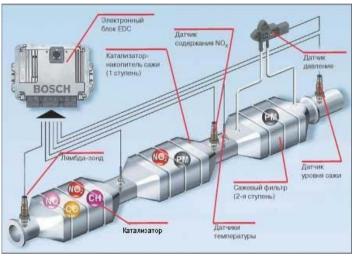
Довнар И.В.

Научный руководитель Осипенко Н.В. Белорусский национальный технический университет

Экологические требования к современному автомобилю являются в настоящее время приоритетными. Экологическая безопасность — это свойство автомобиля снижать негативные последствия влияния эксплуатации автомобиля на участников движения и окружающую среду. Она направлена на снижение токсичности отработанных газов, уменьшение шума, снижение радиопомех при движении автомобиля.

Несмотря на многочисленные попытки заменить двигатель внутреннего сгорания каким-либо другим, не выделяющим токсичные вещества, полной альтернативы ему пока нет. А если принципиально новый двигатель и появится, то переналадка производства для его крупносерийного выпуска потребует грандиозных капиталовложений и произойдет далеко не сразу. Вместе с тем уже сейчас человечество подошло к той черте, когда без экологически чистого автомобиля просто не обойтись. И выход пока видится один — надо если не полностью исключить, то во всяком случае свести к минимуму вредные выбросы ДВС.

Известно, что топливо сгорает в камере при взаимодействии с кислородом воздуха. Этот процесс сопровождается интенсивным выделением тепла, которое и преобразуется в работу. Теоретически для сгорания 1 кг бензина требуется 14,7 кг воздуха, однако на практике этого количества оказывается недостаточно. Дело в том, что воспламенение и сгорание бензино-воздушной (горючей) смеси длится тысячные доли секунды, и к такому быстрому процессу она недостаточно хорошо подготовлена. В смеси остаются газы от предыдущего цикла, препятствующие доступу кислорода к частицам топлива. Кроме того, не удается добиться ее идеального перемешивания по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах. В результате не все топливо окисляется до конечных продуктов, и для нормального протекания процесса сгорания его приходится добавлять. Наиболее токсичными компонентами отработавших газов бензиновых двигателей являются: оксид углерода (СО), оксиды азота (NO_x), углеводороды (СпНт).


Состав выбросов дизельных двигателей отличается от бензиновых. В дизельных двигателях происходит более полное сгорание топлива и при этом образуется меньше окиси углерода и несгоревших углеводородов. Но, вместе с этим, за счет избытка воздуха в дизеле образуется большее количество оксидов азота. Дизельные двигатели, кроме всего прочего, выбрасывают твердые частицы (сажу). Сажа, содержащаяся в выхлопе, нетоксична, но она адсорбирует на поверхности своих частиц канцерогенные углеводороды. При сгорании низкокачественного дизельного топлива, содержащего серу, образуется сернистый ангидрид.

Сравнительно небольшое содержание вредных компонентов в отработавших газах дизелей не требовало в прошлом установки специальных устройств. Однако ужесточение норм токсичности (Евро-3 и Евро-4) коснулось и их. Основные претензии к дизелям экологи предъявляют из-за содержания частиц сажи и окиси азота (NO_x) в выхлопе. Поэтому и на дизелях появились системы снижения токсичности выхлопа, включающие рециркуляцию отработавших газов, каталитический нейтрализатор и специальный сажевый фильтр.

Система рециркуляции выхлопных газов (EGR) применяется на бензиновых, дизельных и газовых двигателях. Она предназначена для снижения токсичности отработавших газов (главным образом уменьшения содержания оксидов азота $\mathrm{NO_x}$) в режимах прогрева и резкого ускорения двигателя, который на данных режимах работает на обогащённой топливной смеси. Часть отработавших газов попадает обратно в цилиндры, что вызывает снижение максимальной температуры горения и, как следствие, уменьшение выбросов оксидов азота, образующихся при высоких температурах и являющихся одними из самых токсичных веществ. Система EGR не ис-

пользуется на холостых оборотах (прогретый двигатель), на холодном двигателе и при полностью открытой заслонке. Однако работа системы вызывает снижение эффективной мощности двигателя.

Сажевые фильтры изготавливают в виде пористого фильтрующего материала из карбида кремния. В конструкциях прошлых лет фильтры периодически очищали от накопившейся сажи отработавшими газами, температуру которых для этого повышали путем обогащения смеси. Очистка фильтра происходила по команде блока управления после каждых 400-500 км пробега автомобиля. Однако в этом случае резко увеличиваются выбросы других вредных веществ. Поэтому современный сажевый фильтр чаще всего работает в паре с окислительным нейтрализатором, который восстанавливает NO_x до NO_2 и одновременно дожигает сажу, причем при более низких температурах — около 250° С.

Яркий пример современного механизма очистки выхлопа дизелей — электронная система управления дизельным двигателем EDC (electronic diesel control), разработанная компанией Bosch. Ее конструкция включает в себя многокомпонентную систему выпуска отработавших газов, в которой предусмотрено семь датчиков — два лямбда-зонда, два температурных, два давления и один уровня сажи в выхлопе, а также три очистительных элемента — каталитический нейтрализатор, катализатор-накопитель и сажевый фильтр накопительного типа. Датчики в системе выхлопа позволили оптимизировать процессы смесеобразования и сгорания. Кстати, для этого под контроль «мозгу» EDC передали и многие системы двигателя — топливо- и воздухоподачи, рециркуляции отработавших газов, электронную дрос-

сельную заслонку и турбонаддув. С помощью датчиков давления на входе и выходе из сажевого фильтра EDC контролирует степень его загрязнения. Эффективность работы катализаторов оценивается по показаниям двух лямбда-зондов (на входе и выходе). Корректировка работы систем двигателя осуществляется на основании показаний лямбда-зондов, датчиков температуры и уровня сажи на выходе. Каталитический нейтрализатор «перерабатывает» токсичные составляющие выхлопа – NO, NO2, CO, CH – в нетоксичные и малотоксичные соединения — H_2O , N_2 , CO_2 , а катализаторнакопитель выполняет функции дополнительной очистки от окиси азота (NO_2) и предварительной — от частиц сажи.

Техническое диагностирование – составная часть процесса ТО и ремонта

Довнар И.А. Научный руководитель Осипенко Н.В. Белорусский национальный технический университет

Техническое диагностирование является составной частью технологических процессов приема, ТО и ремонта автомобилей и представляет собой процесс определения технического состояния машины диагностирования с определенной точностью и без его разборки и демонтажа.

Основными задачами диагностирования являются:

общая оценка технического состояния автомобиля и его отдельных систем, агрегатов, узлов; определение места, характера и причин возникновения дефекта; проверка и уточнение неисправностей и отказов в работе систем и агрегатов автомобиля, указанных в процессе приема автомобиля в ремонт, ТО и ремонта;

выдача информации о техническом состоянии автомобиля, его систем и агрегатов для управления процессами ТО и ремонта, т.е. для выбора маршрута движения автомобиля по производственным участкам;

определение готовности автомобиля к периодическому техническому осмотру;

контроль качества выполнения работ по ТО и ремонту автомобиля, его систем, механизмов и агрегатов;

создание предпосылок для экономичного использования трудовых и материальных ресурсов.

При определении действительной потребности в тех или иных видах работ на ремонтном предприятии исходят, как правило, из следующих факторов: имеет ли автомобиль неисправности в настоящий момент, какие агрегаты и узлы находятся на стадии отказа и каков их остаточный ресурс. Последнее определяется из-за сложности не во всех случаях.