Исследование однородности керамзитопенобетона, применяемого при монолитном изготовлении ограждающих конструкций в несъемной опалубке

Бортницкая А.И.

Научный руководитель – Галузо Г.С., Мордич М.М. Белорусский национальный технический университет Минск, Беларусь

Керамзитопенобетон – анизотропный материал, состоящий из поризованного цементного камня и керамзита. Степень поризации бетона зависит от пористости керамзитового гравия и пористости поризованного цементного камня. Качество и однородность керамзитопенобетона зависит от заполнителей (крупного и мелкого заполнителей), качества дозировки, степени и вида уплотнителя бетонной смеси, режима тепловой обработки и других технологических факторов. При устройстве монолитного керамзитопенобетона в несъемную опалубку остро встает вопрос оценки однородности материала. Однородность бетона является одной из основных качественных характеристик бетона. Она влияет на надежность и несущую способность конструкции и сооружения в целом. Для оценки степени однородности такого материала рекомендуется применять ультразвуковое прозвучивание. [1]

Для проведения таких исследований провели укладку керамзитопенобетона с расчетной маркой по средней плотности D500 в несъемную опалубку фрагмента стены толщиной 90 мм и высотой 800 мм. После достижения бетоном проектного возраста (28 суток) провели разметку несъемной опалубки по горизонтали (10 рядов) и вертикали (4 ряда) двух противоположных сторон фрагмента по всей площади испытуемого образпа согласно схеме.

Определение скорости прохождения ультразвукового импульса проводили прибором УК-10П методом сквозного соосного прозвучивания. [2] последовательно прозвучивали фрагмент парой «излучатель – приемник», установленной в каждой створе узлов (пересечении горизонтальных т вертикальных линий).

Однородность керамзитопенобетона в конструкции характеризуется величиной среднего квадратичного отклонения прочности бетона S и коэффициента вариации (изменчивости) бетона по прочности v.

Показатели однородности \boldsymbol{S} и \boldsymbol{v}_k для отдельной конструкции определялись по формулам:

$$S_k = \sqrt{\frac{1}{n-1}} \sum_{i=1}^n (R_n - R_{in})^2$$
, (1) $U_k = \frac{S_k}{R_n}$, (2)

где R_n — средняя прочность бетона в одной конструкции, R_{in} —прочность бетона в одном і-том участке одной конструкции, n — число контролируемых участков в одной конструкции.

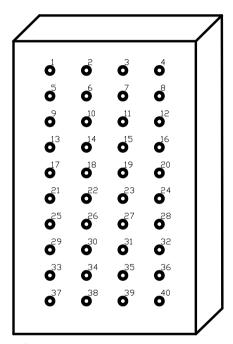


Рисунок – Расположение точек на поверхности образца

При ультразвуковом импульсном методе контроля однородность бетона определяли следующим образом. Проводили измерение скорости прохождения ультразвука в 40 точках. Затем вычисляли среднее значение скорости ультразвукового импульса (УЗИ)

Среднее квадратичное отклонение и показатель изменчивости (коэффициент вариации) значений УЗИ вычисляли по формулам:

$$S_{V} = \sqrt{\frac{\sum_{i=1}^{n} (\overline{V} - V_{i})^{2}}{n-1}}$$
 (3)
$$v_{V}^{Y} = \frac{S_{V}}{V}$$
 (4)

где V – средняя скорость ультразвуковового импульса (УЗИ), V_i – скорость УЗИ в одной точке (створе); n- число точек измерений.

Показатель изменчивости (коэффициент вариации) определяли по скорости УЗИ в отдельности по каждому горизонтальному ряду, вертикальному и в целом по фрагменту. В таблицах 1 и 2 приведены численные значения средней скорости УЗИ, среднеквадратичного отклонения S_V и коэффициента вариации $v_{\rm v}$ по горизонтальным и вертикальным рядам.

Таблица 1

т аолица т				
№	V, м/с	S _v , v/c	$\nu_{\rm v},$	
ряда			%	
1	2121,08	283,18	1,5	
2	2218,75	313,82	6,7	
3	2154,20	563,21	3,7	
4	2208,17	546,99	2,4	
5	2184,91	586,70	5,5	
6	2130,92	621,24	4,7	
7	2118,66	689,13	4,1	
8	2094,15	684,30	5,1	
9	1938,14	940,35	4,7	
10	1914,16	980,63	5,1	

Таблица 2

таолица 2					
№ ряда	V, м/c	S _v , v/c	$v_{\rm v}$, %		
1	2322,17	39,84	1,7		
2	2460,43	44,72	3,3		
3	2473,66	98,05	3,9		
4	1172,70	444,01	37,8		

Следует отметить, что при оценке однородности керамитопенобетона по горизонтальным рядам один результат скорости УЗИ из 4-х был исключен, т.к. он оказался аномальным при проверке на достоверность. [3]

Из анализа данных, приведенных в таблице 1, следует, что коэффициент вариации скорости прохождения УЗИ по 10 горизонтальным рядам находится в пределах от 1,5 до 6,7%, что свидетельствует о достаточно высокой однородности материала по ширине исследуемого фрагмента.

Анализ данных, приведенных в таблице 2, показывает, что коэффициент вариации по трем вертикальным рядам составляет 1,7-3,9%, а по 4-му ряду — 37,9%. Полученный результат по 4-му вертикальному ряду свидетельствует о наличии дефектов в этой зоне, что подтверждается и существенно отличающейся скоростью прохождения УЗИ, в среднем в 2 раза меньшей, чем в 1-3-х вертикальных рядах

Показатель изменчивости прочности бетона \mathcal{O}_V^{δ} по данным ультразвуковых испытаний определяли по формуле:

$$v_V^{\delta} = \alpha \rho v_{V, (5)}^{\gamma}$$

где а находится в пределах от 1,05 до 1,3 и рассчитывается по эмпирической зависимости

$$\alpha = \frac{1,027v_V^Y + 1,446*10^{-2}\beta}{v_V^Y}, (6)$$

где β – коэффициент, учитывающий средние результаты при прозвучивании бетона толщиной менее 0,2 м, определяемый по графику (равен 1,3).

Оценку качества бетона проводят по величине показателя бетона v_{ν}^{δ} . При значении v_{ν}^{δ} =0,1 качество бетона считают отличным, при v_{ν}^{δ} =0,1...0,15 – хорошим и при v_{ν}^{δ} =0,15...0,2 – удовлетворительным.

Оценивая качество пенобетона по прочности по формуле (5) с учетом результатов ультразвуковых испытаний, можно сделать вывод, что керамзитопенобетон по однородности соответствует хорошему качеству.

ЛИТЕРАТУРА

- 1) Галузо, Г.С. Методы исследования и контроля строительных материалов / Г.С. Галузо. Минск: Дизайн ПРО, 1996. Ч. 2: Современные методы контроля технологических процессов и качества готовых строительных материалов и изделий. 67 с.
- 2) Джонс, Р. Неразрушающие методы испытаний бетонов / Р. Джонс, И. Фэкэоару: пер. В.М. Маслобойщиков. М.: Стройиздат, 1974. 296 с.
 - 3) Бетоны. Бетоны. Правила контроля прочности: ГОСТ 18105-86.