тогональным диаметрам. Плотность снега определяется при помощи снегомера или путем взвешивания снега, собранного с 1 м² площади крыши. Очистку кровли от снега следует производить в случае, если фактическая нагрузка от снега превышает принятую в проекте, а также в случае достижении предельных границ при измерении усилий в вантах, напряжений в нижнем металлическом кольце или его вертикальных перемещений.

Таким образом, мониторинг напряженно-деформированного состояния вантового покрытия МКСК «Минск-Арена» предусматривает контроль перемещений центральных металлических колец, усилий в стабилизирующих и несущих вантах, а также напряжений в нижнем металлическом кольце на всех стадиях монтажа и во время эксплуатации. Следовательно, постоянный мониторинг напряженно-деформированного состояния направлен на обеспечение безопасной и безаварийной работы элементов вантового покрытия и сооружения в целом.

ЛИТЕРАТУРА

- 1. Ванты Фрейссине. Представительство «Фрейссине Интернасьональ» в России. М., 2006.
- 2. Журнал «Архитектура и строительство» № 11 ноябрь 2009. Тема номера «Минск-Арена».

УДК 624.5

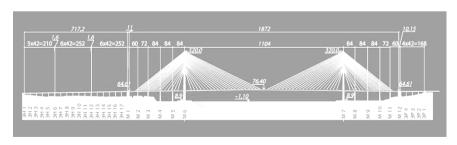
Вантовый мост на о. Русский

Лозейко К.В.

(научный руководитель – Φ омичев B. Φ .) Белорусский национальный технический университет Минск, Беларусь

Проектирование и строительство моста на о. Русский предусмотрено программой подготовки к саммиту АТЭС (Азиатско-Тихоокеанское экономическое сотрудничество), который состоится во Владивостоке в 2012 году. Подрядчик при выполнении работ по строительству моста на остров Русский ОАО "УСК МОСТ".

Субподрядные работы на объекте выполнит Омское НПО "Мостовик", разработавшее проект мостового перехода на остров Рус-


ский через пролив Босфор Восточный во Владивостоке. Строительство началось 3 сентября 2008 года. Сдача объекта запланирована 31 марта 2012 года.

Конструкция мостового перехода определена, исходя из следующих факторов:

Сжатые сроки строительства.

Район строительства мостового перехода характеризуется сложными климатическими условиями: перепад температур от -31 до +37 градусов, скорость штормового ветра до 92 м/с, сейсмическя нагрузка до 8 баллов. Данный мост по замыслу создателей он должен стать визитной карточкой Дальнего Востока и всей России.

Уникальные ланные: длина центрального руслового пролета — 1104 м: высота пилонов — 320 м; самые длинные ванты – до 580 метров. Обшие данные: схема моста: 60+72+3х84+1104+3х84+72+60 м; общая длина моста — 1885,53 м; общая протяженность с эстакадами — 3100 м; ширина моста — 29,5 м; ширина проезжей части — 23,8 м; число полос движения — 4 (2 в каждую сторону); подмостовой габарит — 70 м; количество пилонов — 2; высота пилонов — 320 м; количество вант — 168 шт: самая длинная / короткая ванта — 578,08/181,32 м.

Рисонок 1 – Схема мостового перехода

Данный проект предусматривает ряд уникальных технических решений.

Сооружение железобетонного пилона

Под каждый из двух 320-метровых пилонов моста устраиваются 120 буронабивных свай (на пилоне M-7 со стороны острова Русского – с неизвлекаемой металлической оболочкой).

Бетонирование пилонов производится с помощью оригинальной самоподъемной опалубки фирмы HUNNBECK захватками по 4,5 метра. На первых трех захватках используется кран, далее опалубка начинает движение самостоятельно за счет гидравлического перемещения модульных элементов.

Пилоны моста А-образные, поэтому применение стандартной опалубки невозможно. Для каждого пилона смонтирован отдельный комплект.

Пилоны должны быть возведены в 72 захватки каждый к ноябрю 2011 года. На строительство одного пилона уйдет 4 тыс. тонн арматуры и 21150 кубов бетона, марка бетона B60.

Использование самоподъемной опалубки позволяет повысить качество и снизить сроки сооружения монолитных железобетонных конструкций в полтора раза.

На высоте 197,5 м начинается зона крепления вант. Монтаж вантовых пар и бетонирование тела пилона будут проходить одновременно. Такое технологическое решение резко сокращает сроки строительства.

Монтаж центрального пролетного строения

Конструкция пролетного строения имеет аэродинамическое сечение для восприятия нагрузок от шквалистого ветра. Конфигурация сечения пролетного строения определена на основании аэродинамических расчетов и оптимизирована по результатам экспериментальной обработки масштабной модели на стадии рабочего проектирования.

Высокоточное изготовление металлоконструкций с объемным лазерным сканированием без применения спецкондукторов позволяет изготавливать блоки размером 12 на 26 метров массой до 300 тонн с точностью до 3 мм.

Крупносборные 12-метровые секции для монтажа центрального пролетного строения доставляются баржами к месту сборки и поднимаются краном на 76-метровую отметку. Здесь 190-тонные элементы стыкуются и к ним крепятся ванты.

Вантовая система

Вантовая система принимает на себя все статические и динамические нагрузки, именно от них зависит само существование моста. Она представляет собой две плоскости веерно расположенных вант и включает в себя четыре пары вееров: по два с внешней стороны и по два в центральном пролёте.

Ванты будут поставлены французской компанией Freyssinet international. Ванты не рассчитаны на весь срок службы моста, но они подлежат ремонту и максимально защищены не только от природных стихий, но и от других неблагоприятных воздействий.

PSS-ванты состоят из отдельных прядей диаметром 15,7 мм, каждая из которых состоит из 7-ми проволок. Ванты включают в себя от 34 до 94 стрендов. Длина самой короткой ванты — 135,3 м, самой длинной — 580,5 м. Защитная оболочка ванты выполнена из полиэтилена высокого давления (HDPE) и обладает следующими свойствами:

стойкость к воздействию ультрафиолетовых лучей;

стойкость к воздействию окружающей среды в климатических условиях района г. Владивостока (диапазон температур от -40C до +40C).

Приборы контроля, применяющиеся при строительстве моста:

пульсар 1.2 .Выявление дефектов железобетонных строительных конструкций;

Hilti ферроскан ps200. Определение глубины залегания и оценка диаметра стержня, определяет и визуализирует каркас на глубине до 100 мм;

Test 880 применяется для оценки температуры при бетонировании в зимнее время;

система ГЛОНАСС – контроль и проверка отсыпки площадок, мониторинг геометрических параметров конструкций моста.