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FOREWORD 
 

This textbook is intended for students of construction specialties of 
higher educational institutions and universities. In a relatively small vol-
ume of the present work with sufficient completeness and degree of accu-
racy, theoretical information is presented and detailed solutions to practi-
cal problems in structural mechanics are given. 

The textbook is written on the basis of long term extensive experience 
during teaching a course in structural mechanics at the Belarusian Na-
tional Technical University. The specific gravity of individual chapters is 
slightly increased in comparison with their traditional contents, since the 
material presented in them can be useful for specialists working in the 
field of structural mechanics applications for the development of both 
construction design and computer software. 

The authors believe that the successful solution of applied problems 
by students will be possible if they study the theoretical material in depth. 

Additional educational literature on the course of structural mechanics 
is presented at the end of the book. 

Comments on possible shortcomings of the textbook will be greatly 
appreciated by the authors. 
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THEME 1. GENERAL CONVENTIONS AND CONCEPTS  
OF STRUCTURAL MECHANICS 

 
1.1. Tasks and Methods of Structural Mechanics 

 
Structural mechanics as a science develops the theory of creating en-

gineering structures and methods for calculating their strength, rigidity 
and stability under a variety of static and dynamic loads and other influ-
ences. Strength analysis involves the determination of internal forces in 
all elements of a structure. Based on the found internal forces, the 
strength and stability of each element of the structure, as well as the 
strength and stability of the entire structure as a whole, are checked. The 
rigidity of the structure is estimated by determining the displacements 
(linear and angular) of its characteristic points, sections, elements and 
comparing the found displacements values with the normalized values. 

In the training curriculum for civil engineers, structural mechanics 
immediately follows such a discipline as resistance of materials. The re-
sistance of materials studies the behavior under load of individual ele-
ments: bars, beams, columns, plates. The structural mechanics study the 
response of entire complex structures composed of bars, plates, and sol-
ids, as well as connecting and supporting devices (nodes, links, con-
straints, etc.). 

The main tasks of structural mechanics are: 
• Study of the laws of structures formation. 
• Development of methods for analyzing the internal forces in the ele-
ments and parts of structures due to various external influences and loads. 
• Development of methods for determining displacements and defor-
mations. 
• Study of stability conditions of structures equilibrium in a deformed state. 
• Study of the structures interaction with the environment. 
• Study of changes in the stress-strain state of structures during their long-
term operation. 

In practical terms, the so-called direct task of structural mechanics is 
most fully developed: determination of the stress-strain state of a struc-
ture under given loads and other influences. It is assumed that the design 
scheme of the structure, the properties of the materials and the dimen-
sions of its elements are also given. This main task of structural mecha-
nics is sometimes called the verification calculation of the structure. 
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In the calculations of buildings and engineering structures, the hy-
pothesis of continuity of materials, the hypothesis of their homogeneity 
and isotropy, the hypothesis of direct proportionality between stresses 
and strains are used. Deformations and displacements of structural ele-
ments are assumed to be small, which allows the analysis of most struc-
tures using an undeformed design scheme. 

To solve the problems, structural mechanics develops and applies the-
oretical and experimental methods. Theoretical methods use the achieve-
ments of theoretical mechanics, higher and computational mathematics, 
computer science and programming. Experimental methods are based on 
testing samples, models and real structures. 

Though at the initial stage of its development structural mechanics 
was based mainly on graphical methods for solving its problems, then 
with the development of computer technology analytical solutions have 
become more and more applied. Moreover, instead of numerous particu-
lar methods and techniques that made it possible to avoid solving systems 
of joint equations, nowadays in structural mechanics, general universal 
methods (analytical and numerical) have come to the fore, allowing engi-
neers to analyze complex structures as entire deformable systems. The 
solution of systems of joint linear algebraic equations with hundreds of 
thousands of unknowns has ceased to be a stumbling block. Computer 
technology has allowed not only to solve, but also to compose systems of 
equations of high orders, and most importantly, to review the obtained 
results, displaying them on the monitor screen in a graphical form famil-
iar to an engineer. 

Structural mechanics is a constantly developing applied science. New 
mathematical models of the real materials behavior during their defor-
mation are being developed. The loading conditions of structures and the 
values of loads are being specified. Thermal and other effects are being 
taken into account. Nonlinear methods for analyzing structures in a de-
formed state are increasingly being used. Methods of synthesis and de-
sign optimization of structures are being developed. The connection of 
structural mechanics with the design of structures, with the technology of 
their manufacture and construction, is becoming increasingly close. It all 
leads to the creation of more solid, economical, reliable and durable 
buildings and structures. 
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1.2. Design Scheme of the Structure. The Concept and Elements  
 

When analyzing structures, engineers usually do not deal with the real 
structure itself, but with its design scheme. The choice of a design 
scheme is a very important and responsible process. The design scheme 
should reflect the actual response of the structure, as close as possible, 
and, if possible, facilitate both the calculation process itself and the anal-
ysis process of the calculation results. In this respect it is essential to have 
extensive experience in the calculation of structures, to have a good idea 
of the analyzed structure behavior. It is necessary to know and to be able 
to predict the impact of the individual elements on the response of the 
entire construction. 

Depending on the geometric dimensions in structural mechanics, the 
following main structural elements are distinguished: rods or bars, shells, 
plates, solids, thin-walled bars. Structural elements may also include con-
necting devices (nodes, links, and other connections) and supporting or 
limiting devices (supports or constraints). 

Spatial structural elements, in which one size (length) significantly 
exceeds the other two, are called bar elements.  

Spatial elements, one size (thickness) of which is much smaller than 
the other two sizes, are called shells, if they are bounded by two curved 
surfaces or plates if they are bounded by two planes.  

On the design schemes of the structures, the bars are replaced by their 
axial lines (straight line, curve line or polyline), and the plates and shells 
are replaced by their median surfaces (plane or curved). 

Solid bodies are elements of the structure or the environment in which 
all three sizes are of the same order (sometimes unlimited), for example: 
foundations, dams, retaining walls, and soil and rock massifs. 

Bars are called thin-walled if they have all main dimensions of differ-
ent orders: the thickness is significantly less than the cross-sectional di-
mensions, and the dimensions of the cross-section are much smaller than 
the length. 

Separate elements that form the structure are combined into a united 
system through nodal connections, or simply nodes. Nodes are also con-
sidered as idealized. Usually they are divided into nodes that connect the 
elements by ideal hinges without friction and the nodes that are absolute-
ly rigid. 
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An ideal hinged node (or simply a hinge) is considered as a device that 
allows only mutual rotation of the connected elements relative to each  
other. At the design schemes, the hinge is indicated by a small circle. 

Hinged joint transfers only concentrated force from element to ele-
ment. This force is usually decomposed into two components. When two 
rectilinear elements lying on one straight line are articulated by hinge 
(Figure 1.1, a), the internal force in the joint is decomposed into longitu-
dinal N and transverse Q components. When the elements are articulated 
at an angle (Figure 1.1, b), the interaction force is decomposed into verti-
cal V and horizontal H components, or otherwise. There is no bending 
moment in any swivel joint (in any hinge). 

 

 
 

Figure 1.1 
 

An absolutely rigid connection of elements (rigid node) completely 
eliminates all their mutual displacements. Special designations for rigid 
nodes are not usually introduced (Figure 1.2, a). Sometimes a rigid node 
is designated as a small square (Figure 1.2, b). Three internal forces act in 
a rigid node, for example, the vertical component V, the horizontal com-
ponent H and the bending moment M (Figure 1.2, c). 

 

 
 

Figure 1.2 
 

Sometimes such division of nodes into perfectly hinged and ideally 
rigid is not true. Then the nodes are considered as compliant or elastic, 
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allowing mutual displacements of the connected elements (for example, 
rotation) proportional to the internal forces acting in the node. On design 
schemes, elastic nodes are being depicted with additional elements: de-
formable (Figure 1.3, a) and/or absolutely rigid (Figure 1.3, b) and others. 
Internal forces in elastic nodes depend on the mutual displacement of the 
connected elements. For example, the value of the bending moment  
(Figure 1.3, c) in an elastic node (Figure 1.3, a, b) depends on the mutual 
rotation angle of the connected bars. 

A structure is attached to the ground (to the foundation) or to other 
structures with the help of supports. There are the following main types 
of disign schemes for supports of plane (two-dimensional) structures: 
hinged movable supports (roller supports), hinged immovable supports 
(pin supports), absolutely rigid supports (build-in or fixed supports), 
movable rigid supports and floating rigid supports. The latter eliminates 
only rotation. 

 

 
 

Figure 1.3 
 

The hinged movable support limits only one linear movement in a 
given direction. Structurally, such a support can be made in the form of a 
cylindrical roller. The roller is freely moving along the supporting surface 
(Figure 1.4, a). A single reactive force arises in such support. The action 
line of the reactive force passes through the points of contact of the roller 
with the supporting surfaces of the foundation and structure. If the dis-
placements of the real structure are small enough, then the roller can be 
replaced with a swinging rod (Figure 1.4, b, c). In the design schemes, the 
hinged movable support is depicted in the form of one rectilinear support 
rod with hinges at the ends (Figure 1.4, c). In such support, the direction 
of the reactive force coincides with the direction of the support rod, i.e. 
with the direction of the prohibited displacement. 
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Figure 1.4 
 

If large displacements of the support point are possible in the struc-
ture, then the design diagram of the articulated movable support is de-
picted in the form of a slide-block pivotally connected to the structure 
and freely sliding on the supporting surface (Figure 1.5, a), or freely roll-
ing on it on rollers (Figure 1.5, b). The structure cannot move in the di-
rection perpendicular to the supporting surface. A single reactive force 
normal to the supporting surface acts on the structure from the side of 
such roller support. 

Even if the reaction of a roller support, which is depicted in the form 
of an inclined support rod, is decomposed into two components (Figure 
1.5, c), then only one of them will be unknown. The second is clearly ex-
pressed through the first. 
 

 
 

Figure 1.5 
 

An immovable hinged support (Figure 1.6) completely eliminates all 
linear displacements and allows free rotation only about the axis of the 
support hinge. In this support, only a reactive force arises, the action line 
of which passes through the center (axis) of the pinned support. Since the 
direction of the action line of this reaction is unknown, to define this re-
action it is decomposed into two unknown components, usually vertical 
and horizontal. Therefore, it is possible to assume that the hinged immov-
able support (Figures 1.6, a, b) is equivalent to two support rods intersect-
ing on the axis of the support hinge (Figures 1.6, c, d). 
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Figure 1.6 
 

An absolutely rigid support (Figure 1.7, a), does not allow either linear 
or angular movements. Three reactions arise in such fixed support: two 
reactive forces (two components of the total reactive force of an unknown 
direction) and a reactive moment. The absolutely rigid support is equiva-
lent to three support rods (Figure 1.7, b). 

Rigid movable (non-hinged) supports leave freedom for one linear 
displacement (Figure 1.7, c, e). Naturally, the reactive force component in 
the rigid movable supports in the direction of free linear movement is 
absent. There a reactive moment remains and a reactive force perpen-
dicular to the free linear displacement remains, i.e., two support reactions. 
Such rigid movable supports are equivalent to two support rods (Figu- 
res 1.7, d, f). 
 

 
 

Figure 1.7 
 

Floating rigid supports (Figure 1.8) eliminate only angular displace-
ments. Only one reactive moment arises in a floating support. Floating 
support can be designated by a special device (Figure 1.8, a), or simply 
by a square (Figure 1.8, b), specifying its properties. 
 

 
 

Figure 1.8 
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Modern methods of structural mechanics, modern computer technolo-
gy and modern design and computing systems for the analysis of struc-
tures allow you to calculate almost any design scheme. 

For the same framework, it is possible to choose several design sche-
mes. Preliminary design of cross section parameters of structural ele-
ments can be performed on a calculator according to a simplified calcula-
tion scheme. The final calculation should be performed in accordance 
with more complex and accurate design schemes using computers and 
modern software. 

Here is an example of choosing a design scheme for truss structure. Un-
der certain conditions, a system of rods with ideal frictionless hinged joints 
on each end can be adopted as a design scheme for its analysis (Figure 1.9). 
In this case the analysis of internal forces in its elements is easily per-
formed on a calculator with the use of equilibrium equations only.  

In fact truss structures can be made of bent-welded rectangular or tube 
profiles with welded nodes or in monolithic reinforced concrete, then 
their analysis will require a more accurate design scheme with rigid nodal 
joints (Figure 1.10). 
 

 
 

                                Figure 1.9                                                 Figure 1.10 
 

Such design scheme is already statically indeterminate many times. Its 
analysis is possible when taking into account additional deformation equa-
tions and is reduced to solving a system of joint linear algebraic equations of 
a sufficiently high order. It will require the use of computer software. 

 
1.3. Classification of Design Schemes of Structures 

 
Classification of structures can be performed, in terms of their analy-

sis, according to various criteria. 
 
1.3.1. Plane and Spatial Structures 
 
A structure is called plane, or two-dimensional, if: 
a) the geometric axis of all its elements that make up the structure lie 

in the same plane, 
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b) in all cross sections of each element one of the main axes of inertia 
lies in the same plane, 

c) the lines of action of all the loads applied to the structure also lie in 
the same plane. 

If at least one of these conditions is not fulfilled, then the structure is 
spatial. 

All real structures are spatial. But in order to simplify their analysis, 
they are divided into a number of plane systems. Such dismemberment is 
not always possible. Therefore, some structures have to be considered as 
spatial. This book is devoted to the analysis and calculation of predo-
minantly plane systems. 

 
1.3.2. Bars Systems, Thin-walled Spatial Systems and Massifs  
Systems (Solid Bodies). 
 
Structures which are consisted of rectilinear or curvilinear bars or rods 

are called bar systems.  
Structures composed of shells and plates are called thin-walled and are 

usually spatial. 
Massifs systems mean structures consisting of solid bodies, for exam-

ple: foundations, dams, retaining walls, as well as soil and rock massifs 
themselves. Massive systems can be considered both in three-dimensional 
and in two-dimensional space. 

Traditionally, structural mechanics deals with the study of mainly bar 
systems. But modern computer software allows you to analyze spatial 
thin-walled and massifs systems, using almost the same methods as for 
bar systems.  

 
1.3.3. Structures with Hinged or Rigid Nodal Connections of  
Elements 
 
A bar system composed of rods with ideal frictionless hinge joints on-

ly on each end of each rod is called a hinge-rod system or a truss (Figu- 
re 1.9).The bar system, in which the elements are connected, basically 
absolutely rigidly, is called a frame (Figure 1.10, Figure 1.11). 

In the same structure, both hinged and rigid joints of elements can be 
used. Sometimes this method of joining is called combined. As example 
it is the beam with a polygonal complex tie (Figure 1.12). The simultane-
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ous use of rigid and articulated joints takes place in the design schemes of 
many other types of structures, for example: in a three-hinged frame 
(Figure 1.13), in a two-span two-tier frame with a central pendulum col-
umn and with a pivotally supported upper crossbar (Figure 1.14).  

 

 
 
         Figure 1.11                                             Figure 1.12 

 

 
 

                    Figure 1.13                                                            Figure 1.14 
 

1.3.4. Geometrically Changeable and Unchangeable Systems.  
Instantaneously Changeable and Instantaneously Rigid Systems 
 
If a structural system allows a change in its geometry (shape distor-

tion) due to the mutual displacement of the elements without their de-
formation or destruction, then the following system is called geometrical-
ly changeable (Figure 1.15). If a change in the shape (geometry) of a sys-
tem is possible only due to deformation or destruction of its elements, 
then the following system is geometrically unchangeable (Figure 1.16). 
 

 
 
                         Figure 1.15                                                   Figure 1.16 
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The classification of structures by kinematic characteristics is of great 
importance, since, as a rule, geometrically unchangeable systems can be 
used as structures. Only some hanging systems of a variable type made of 
flexible elements or cables are an exception.  

With an arbitrary change in the sizes of the elements and/or a change 
in the mutual arrangement of the nodes of the system, it is possible to 
obtain its special (singular) shape, the kinematic properties of which will 
differ from the properties of adjacent forms. For example, a two-rod ge-
ometrically unchangeable system (Figure 1.16), when changing the lengths 
of its elements, can take a special form in which both rods will lie on one 
straight line (Figure 1.17). 

In this special case, the intermediate joint will be free to move vertically. 
However, the vertical movement of the intermediate joint can only be infini-
tesimal, since the rods are assumed to be completely non-deformable, i.e. 
absolutely rigid. All adjacent forms in which the rods do not lie on one 
straight line will be geometrically unchangeable. Special forms in which the 
system allows infinitely small movements are called instantaneously 
changeable. When a system is removed from an instantaneously changeable 
configuration, it becomes geometrically unchangeable. 

Systems whose configurations are instantaneously changeable (Figu- 
re 1.17) or close to those (Figure 1.18), as a rule, are not used as structures, 
since they have heightened deformability. 

 

 
 

                             Figure 1.17                                               Figure 1.18 
 
On the other hand, in a geometrically changeable system (Figure 1.19), 

one can choose the lengths of its elements so that, for example, all its nodes 
are located on one straight line (Figure 1.20). This will be a special form of a 
geometrically changeable system, which is called instantaneously rigid. In 
adjacent forms, the considered geometrically changeable system allows large 
kinematic movements without deformations of its elements (Figure 1.19). 
The same system in a special form (Figure 1.20) under the condition of abso-
lute inextensibility of the rods allows only infinitesimal displacements. 

Thus, both geometrically unchangeable and geometrically changeable 
systems can have special, singular forms. 
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Under real conditions, when elements of structures are made of deform-
able materials, singular forms are characterized by finite displacements of 
nodes, the values of which are an order of magnitude higher than the elon-
gations of elements. Consequently, instantaneously changeable systems are 
characterized by heightened deformability compared to geometrically un-
changed systems, and instantaneously rigid systems are characterized by 
heightened stiffness compared to geometrically changeable systems. 

 
 

 
 
                             Figure 1.19                                   Figure 1.20 

 
Instantaneously rigid systems are widely used in pre-stressed suspen-

sion and cable-stayed systems 
 
1.3.5. Thrust and Free Thrust Systems 
 
If in a structure a load of one direction causes support reactions of the 

same direction, then such a structure is called free of thrust or simply 
non-thrusting. All other structures can be attributed to thrusting systems. 
The thrust of a structure is support reactions normal to the load action 
direction. 

A classic example of non-thrusting systems is beams: a simply sup-
ported rectilinear beam (Figure 1.21), a simply supported curvilinear 
beam (Figure 1.22) and other beam-type systems (Figures 1.9, 1.10, 
1.12). The double-hinged arch (Figure 1.23) and the three-hinged frame 
(Figure 1.24), the same as many others, are thrusting systems. 

 

 
 

                        Figure 1.21                                                    Figure 1.22 
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                                     Figure 1.23                                      Figure 1.24 
 
Therefore non-thrusting systems are often called as beam systems. 

And thrusting systems are called as arch systems. 
 
1.3.6. Statically Determinate and Indeterminate Systems 
 
In a statically determinate system, all internal forces can be found us-

ing only equilibrium equations (static equations). 
If there is a need to use the equations of deformations to determine the 

support reactions or at least part of the internal forces, then such a system 
is called statically indeterminate 

A statically indeterminate system has an excess of nodal and other 
connections or links than is necessary for its geometric immutability.  
A statically indeterminate system can have preliminary stress (initial in-
ternal forces, i.e., forces without load due to thermal effects, displacement 
of supports, inaccurate assembly, etc.). In a statically determinate system, 
initial internal forces are impossible without external loads. 

 
1.3.7. Linearly and Nonlinearly Deformable Systems 

 
If the relations between the load applied to the structure and the inter-

nal forces and displacements caused by it obeys the law of direct propor-
tionality, then such a structure is called linearly deformable, or simply 
linear. In a linearly deformable system, deformations and displacements 
are supposed to be small. Their influence on the distribution of internal 
forces is neglected. The geometry of the deformed structure is assumed to 
coincide with the geometry of the original undeformed structure. The 
equilibrium equations are relative to the original, undeformed design 
scheme. The stress-strain state of a linear system is described by linear 
differential or linear algebraic equations. 
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However, if the deformations and displacements caused by external 
influences in a structure are significant, then the relations between the 
loads, the internal forces and displacements become non-linear. Such a 
structure is called nonlinearly deformable, or non-linear. 

Non-linearity due to a change in the geometry of the design scheme of 
the structure is called geometric non-linearity. The calculation of large-
span and high-rise structures is usually carried out taking into account 
geometric nonlinearity. All geometrically changeable, instantaneously 
changeable and instantaneously rigid systems (suspension coverings and 
roofs, suspension bridges, cable and cable-stayed networks and systems) 
are geometrically non-linear. 

The nonlinearity associated with the deviation of the law of defor-
mation of the building material from the law of direct proportionality, 
Hooke's law, is called physical nonlinearity. 

  
1.4. Plane Bar System Degree of Freedom 

 
The degree of freedom of a body or system of bodies is the number of 

independent geometric parameters that determine the position of a body 
or system of bodies when they move on a plane or in space. 

The position on the plane of a movable (free) material point of in-
finitesimal dimensions (hinge node) is characterized by its two coor-
dinates relative to an arbitrary fixed reference system located in the same 
plane (Figure 1.25). Consequently, the point (hinge node) has two de-
grees of freedom on the plane. 

 

 
 

Figure 1.25 
 

A separate body (bar) or a knowingly geometrically unchangeable 
system of bodies (bars system) or its part, which can move on a plane as a 
whole, without changing its geometric shape, is called a disk. 

The position of the moving (free) plane body (disk) on the plane is 
characterized by three independent parameters, for example: the abscissa 

X

Y 

А 
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x and the ordinate y of a point A and the angle of some straight line AB 
belongs to the disk (Figure 1.26). Thus, when moving on a plane the disk 
has three degrees of freedom. A rigid node on a plane, even of suffi-
ciently small dimensions, in contrast to the articulated node, should be 
considered as a disk. Therefore, a rigid node on a plane has three degrees 
of freedom. 

 

 
 

Figure 1.26 
 

In space, a free solid is considered as a spatial block and has six de-
grees of freedom: three coordinates of any of its points and three angles 
of rotation of any of its lines with respect to the axes of the fixed spatial 
coordinate system. 

In this section only plane systems are considered. 
 
1.4.1. Classification of Plane Systems Connections 
 
Any device that reduces the degree of freedom of a body or system of 

bodies by one is called a simple connection or a simple link or a single 
constraint. If the device constrains several degrees of freedom, then it is 
considered as a complex (multiple) connection, equivalent to several 
simple ones. 

Each connection has both kinematic and static characteristics. 
The kinematic characteristic determines the types of motion of one 

disk relative to another, which are constrained by the connection, the 
number of degrees of freedom that this connection eliminates. The static 
characteristic determines the number and types of reactions that occur in 
the corresponding connection. 

Thus, any structure can be considered as a system of disks connected 
by links, both among themselves and with a supporting surface (ground). 
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The earth (supporting surface) can also be considered as a disk. Most of-
ten, an immovable coordinate system is associated with the ground, and 
the degree of freedom of the system under study is determined relative to 
the earth. 

In kinematic analysis, disks and connections are assumed to be non-
deformable, absolutely rigid. 

Let’s consider the design schemes of connections used in structural 
mechanics. 

A movable hinged support is equivalent to one simple link. A disk, 
which is attached to the ground (supporting surface) with a movable 
hinged support, loses one degree of freedom. A system of a disk and a 
support rod has two degrees of freedom (Figure 1.27). 

A single hinged rod connecting two disks can also be considered as a 
simple link. A system of two disks connected by one hinged rod loses one 
degree of freedom (Figure 1.28). The total degree of freedom of such a 
system is five, as opposed to six degrees of freedom for two free disks. 

 

 
 

                Figure 1.27                                             Figure 1.28 
 
A single hinge (indicated by a circle on the design diagrams) is equiv-

alent to two simple links. Connecting two disks, one hinge reduces their 
total degree of freedom, equal to six, to four. The position of two disks 
connected by the hinge is characterized by two coordinates x and y of 
point A and two angles  and  fixing the position of lines AB and BC 
(Figure 1.29, a). The earth (supporting surface) can be considered as an 
immovable disk. A movable disk, when it is attached by a hinge to the 
ground (to a fixed supporting surface), loses two degrees of freedom. The 
position of this disk is characterized by only one angle of rotation relative 
to the axis of the hinge (Figure 1.29, b). Such a device can be considered 
as an immovable hinged support, equivalent to two simple support rods 
(Figure 1.29, c). An immovable hinged support eliminates two degrees  
of freedom. 



20 

 
 

Figure 1.29 
 

A system of three disks connected by two hinges (Figure 1.30, a) has 
five degrees of freedom. Two hinges eliminated four degrees of freedom. 
In this system, the intermediate disk can also be considered as a simple 
connection (compare with the system in Figure 1.28). 

In kinematic analysis, any rod (bar) can be considered as a disk, and 
any disk can be replaced by a bar. 

Often two hinges connecting three disks come together and merge, as 
if into one hinge on a common axis (Figure 1.30, b). Such a complex 
hinge is equivalent to two simple hinges, or four simple links. 

 

 
 

Figure 1.30 
 

In the general case, the multiplicity of the following complex hinge is 
one point less than the number of disks (rods) connected on one axis. In 
other words, the relation is true: 

 
1,H D   

 
where H  is the multiplicity of the complex hinge, D  is the number of 
disks connected by the complex hinge on one axis. 

Examples of simple hinges are shown in Figure 1.31, a. Figure 1.31, b 
shows multiple hinges. 
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If two disks (rods) are monolithically (or by welding) combined into 
one disk, then such a joint is called a rigid connection, or a rigid node. 

 

 
 

Figure 1.31 
 

Rigid nodes can also be simple (Figure 1.32, a), or multiple (Figu- 
re 1.32, b). The multiplicity of rigid nodes is determined by the formula: 

 
1,R D   

 
where R  is the number (multiplicity) of simple rigid nodes, D  is the 
number of disks that are monolithically connected in one node. A simple 
rigid connection eliminates three degrees of freedom. It is equivalent to 
three simple links. 
 

 
 

Figure 1.32 
 

A rigid (build-in) support that eliminates the ability of the disk (bar) to 
move relative to the supporting surface, like a rigid node, is also equiva-
lent to three simple links (Figure 1.7, a, b). 
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If necessary, rigid nodes allow breaking one disk (bar) into an arbi-
trary number of component bars (disks) (Figure 1.33). 

 

 
 

Figure 1.33 
 
If a system of disks connected by links can change the geometric 

shape given to it or move relative to the supporting surface, then it is a 
mechanism, that is, it is geometrically variable, and cannot (with rare ex-
ceptions) act as a structure. 

The goal of kinematic analysis is precisely to find out: 
•whether structural systems are capable of perceiving the load trans-

ferred to them without a significant change in their geometric shape, 
•what should be the ratio between the number of disks and the number 

of constraints (links) imposed, 
•what is the complexity of the calculation to determine the reactions, 

internal forces and displacements in the structure. 
 
1.4.2. Degree of Freedom (Degree of Variability) of Plane Systems.  
Formulas for Calculating 
 
Based on the concepts introduced above, it is easy to determine the de-

gree of freedom W of any planar system composed of D disks connected to 
each other and the supporting surface by R simple rigid nodes, H simple 
hinges, and Lo simple support links. 

If the system consists only of free, unconnected disks, then its degree of 
freedom will be equal to 3D. Each simple rigid joint introduced eliminates 
three degrees of freedom, each simple hinge - two, and each simple support 
link - one degree of freedom. Therefore, the total degree of freedom of the 
system is equal to the difference: 

 

03 3 2 .W D R H L                                   (1.1) 
 

For the correct application of the obtained formula, it should be re-
membered that R, H and Lo mean the total number of, respectively, sim-
ple (single) rigid nodes, simple (single) hinged nodes and simple support 
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links. In this case, it is necessary to ensure that each disk and each con-
nection (each device) are counted only once. In other words, if, for exam-
ple, the hinge connection of one of the disks to the ground is taken into 
account as a simple hinge, then this support device can no longer be in-
cluded in the number of simple support links as a hinged immovable sup-
port equivalent to two support links. 

The degree of freedom of a plane system, separated from supports (not 
having support connections), i.e., in the mounting or transport state, con-
sists of the degree of freedom of it as a rigid whole, equal to three (on the 
plane) and the degree of variability of V of its elements relative to each 
other ( internal mutability). Thus, we can write 

 
3 ,W V   

where from 
 

3.V W   
 

Substituting the expression W in the last formula, provided that there 
are no support rods in the system, we obtain the final formula for calcu-
lating the degree of variability of the bars system disconnected from the 
supports 

 
3 3 2 3.V D R H                                    (1.2) 

 
If the degree of freedom (or degree of variability) of the system is pos-

itive (greater than zero) 
 

0 (or 0),W V   
 

then the system is geometrically changeable. In its structure, to ensure 
geometric immutability, W (or V) links are missing. 

For example, a suspension system (Figure 1.34) is composed of four 
rods connected by three hinges and is supported by two hinged immova-
ble supports (in total 4 support rods). Its degree of freedom is equal to 

 

03 2 3 4 2 3 4 2.W D H L          
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Figure 1.34 
 

Therefore, it is geometrically changeable. Its structure lacks two links to 
ensure geometric immutability. 

If the degree of freedom (or degree of variability) of the system is nega-
tive (less than zero) W < 0 (or V <0), then the system contains an excessive 
number of links from the point of view of geometric immutability.  

A two-span two-tier frame (Figure 1.35, a) consists of eight disk 
(bars). The bars are connected by two simple hinges, three double rigid 
nodes (six single, simple) and are supported by three absolutely rigid 
supports. Its degree of freedom is equal to 

 

03 3 2 3 8 3 6 2 2 9 7.W D R H L              
 

In terms of geometric immutability, this frame contains seven extra 
links. 

The same frame can be considered as composed of only two disks 
connected by two hinges (Figure 1.35, b). One of the disks has three rigid 
supports (9 simple support rods). Consequently, we get the same result: 

 

03 3 2 3 2 3 0 2 2 9 7.W D R H L              
 

The negative degree of freedom of the system equal to the number of 
redundant connections determines the degree of static indeterminacy of 
the system. Therefore, the degree of static indeterminacy of the system 
can be calculated by the formula: 

 

03 2 3 ,W R H L D                                 (1.3) 
 

where   is the number of extra links (redundant links). 
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Figure 1.35 
 
If the degree of freedom of the system is zero 

 
0,W   

 
then the system has the number of connections necessary for geometric 
immutability and immobility and can be statically determinate. 

Such a system is shown in figure 1.36. It consists of 9 disks (bars).  
It has no rigid nodes. The disks are connected by 12 simple hinges (the 
multiplicity of hinged nodes is shown in the figure). Three supporting 
rods link it to the supporting surface. Its degree of freedom is equal to 

 

03 3 2 3 9 0 2 12 3 0.W D R H L            

а)
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The same result can be obtained in a different way, assuming that the  
system is composed of 11 bars. It is assumed that both half-beams are 
formed by each of two bars soldered rigidly in quarters of a span. Conse-
quently, two additional rigid nodes appear. The number of hinges and 
supporting rods has not changed. There are other options for calculating 
the degree of freedom of a given system. 

 

 
 

Figure 1.36 
 

If the degree of variability of the system is zero 
 

0,V   
 

then the system has the number of bonds necessary for internal geometric 
immutability and can be internally statically determinate. For example, the 
degree of variability of a single-slope truss without supports (Figure 1.37) 
is zero:  
 

3 3 2 3 3 13 0 2 18 3 0.V D R H            
 

The system contains the necessary number of links that are internally 
geometrically unchanged and statically determinate. But externally, rela-
tive to the earth, the system is mobile; it lacks at least three support con-
nections to give it immobility. A greater number of superimposed support 
connections will turn it into an externally statically indeterminate system. 

The calculation of the degree of freedom or the degree of variability 
for plane truss can also be performed using a more convenient formula. 

In the truss, the hinged nodes can be considered as material points 
having two degrees of freedom on the plane. The truss rods, as well as the 
support rods, can be considered as simple links. 
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Figure 1.37 
 

If the nodes of the truss were not connected by rods, then the system 
of N free nodes would have 2N degrees of freedom. The truss rods con-
necting the nodes and the support rods, each as a simple link, eliminate 
one degree of freedom. Therefore, the degree of freedom of the plane 
truss can be calculated by the formula 

 
2 ,W N B L                                        (1.4) 

 
where N  – the number of truss nodes as material points, 

    B  – the number of rods of the truss, 
    L  – the number of support rods (simple links). 

Accordingly, the degree of variability of the truss disconnected from the 
supports will be equal to  
 

2 3.V N B                                         (1.5) 
 

So for a farm without supports (Figure 1.37) we have 
 

2 8 13 3 0.V       
 

Thus, the use of the above formulas to calculate the degree of freedom 
or the degree of variability of plane bars systems provides the necessary 
analytical criteria for geometric immutability or variability, static defina-
bility or indeterminacy. 

Unfortunately, these analytical criteria are necessary, but not suffi-
cient.  
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1.5. Geometrically Unchangeable Systems.  
Principles of the Formation 

 
The above formulas for calculating the degree of freedom (degree of 

variability) of bars systems provide only a formal assessment of the kin-
ematic properties of the systems under study, which is not always true. 
For the final conclusion about the geometric immutability and static de-
finability of the bar system, an analysis of its structure, an analysis of the 
principles by which it is assembled is necessary. Only systems of the cor-
rect structure will be truly geometrically unchangeable. 

For example, a system being partially statically indeterminate and par-
tially geometrically variable (Figure 1.38) refers to systems of irregular 
structure, although its total degree of freedom is zero. The system shown 
in Figure 1.39 also has a zero degree of freedom, but in fact it is instanta-
neously changeable, since it has infinitely small mobility. Its structure is 
also irregular. An instantaneously rigid system (Figure 1.40) formally has 
one degree of freedom, but in fact it has two degrees of freedom. In addi-
tion, it can have initial efforts (for example, from cooling its elements), as 
once a statically indeterminate system. 

 

 
 
                  Figure 1.38                       Figure 1.39                         Figure 1.40 

 
For systems of irregular structure, the concepts of the degree of freedom 

or the degree of variability, calculated by the formulas derived above, be-
come indefinite, meaningless. 

Let us consider the main methods for the formation of obviously geomet-
rically unchangeable bar systems. 

1. The dyad method. The degree of freedom of the system (disk) will not 
be changed if you attach (disconnect) the hinge node using two hinged rods 
not lying on one straight line (Figure 1.41). Disks and any other subsystems 
that are known to be statically definable and geometrically unchangeable 
(Figure 1.42) can act as such rods. 

W=0 W=0

W=1
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2. The triangles method. Three disks 1, 2 and 3 connected by three 
hinges A, B and C, not lying on one straight line (Figure 1.43), form a 
new internally geometrically unchangeable system (disk). The total num-
ber of extra links, if they are in the source disks, is not changed. The total 
degree of freedom of the three discs is reduced by six units. 

 

 
 
                       Figure 1.41                                                  Figure 1.42 

 
3. The method of hinge and simple link, equivalent to the method of 

triangles. Two disks 1 and 2, connected by a common hinge C and one 
rod AB, provided that the straight line AB (or its extension) does not pass 
through the hinge C, form a new single disk (Figure 1.44). At the same 
time, the total number of extra links in the source disks does not change, 
and their total degree of freedom is reduced by three units. 

 

 
 

Figure 1.43                               Figure 1.44 
 

4. The three links method. Two disks are connected by three hinged 
rods (Figure 1.45), lying on straight lines that are not intersected at one 
point and are not parallel to all three at once, form a united system (new 
disk). In the new system, the total number of excess links, if they were in 
the original disks, does not change, and the total degree of freedom is 
reduced by three units. 

Generally speaking, the considered methods of forming a single sys-
tem of several components are applicable to any system with redundant 
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links (statically indeterminate disks), and to systems with missing links 
(mechanisms). 

 

 
 

Figure 1.45 
 

In order for a united system to be formed according to the considered 
laws to be geometrically unchangeable and statically determinate, it is 
necessary and sufficient for its components, each separately, to be geo-
metrically unchangeable and statically determinate. Moreover, each disk 
can be considered as a rod and each rod can be considered as a disk. Then 
the considered methods of formation of obviously geometrically un-
changeable and statically determinate systems can be reduced to two 
main methods. 

1. The triangles method: three disks (rods) connected by three hinges 
that do not lie on one straight line form a deliberately geometrically un-
changeable (internally) and statically determinate system (new disk) 
(Figures 1.43, 1.44). 

2. The three connections method: two disks connected by three hinged 
rods whose axes do not intersect at one point (three parallel rods can be 
considered intersecting at infinity), form a new disk (Figure 1.45). 

Certainly, the considered methods of formation, assembling (or dis-
mantling, disassembling) of obviously geometrically unchangeable and 
statically determinate systems can be applied not only individually, but 
also in their arbitrary combination, sometimes replacing each other. 

So, a three-hinged arch with a tie-bar (Figure 1.46) can be considered 
as formed: 

• By the dyad method. Firstly the support hinge A is unmovably attached 
to the ground using the two hinged support rods. Secondly the support hinge 
B is fixed by the third support rod and the bar AB. Finally, the hinge C is 
made immovable by means of two half-arches. 

• By the triangle method. The support rods of the support A, together with 
the ground, form the first triangle and the first single disk. The resulting disk, 
the beam AB and the support rod of the support B form a new single disk. 
Finally, the disc AB and the semi-arches AC and BC form the resulting tri-
angle disc ABC. 
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• The combination of the three connections method and the method of 
dyads (or triangles). Beam AB is connected to the ground by three simple 
links (support rods). The hinged node C is attached to the resulting system by 
the dyad method (or a triangle ABC is formed). 

 

 
Figure 1.46 

 
Kinematic analysis of already created system can be carried out in the re-

verse order, i.e., by dismantling. If, as a result of discarding nodes and bars 
(disks) connected according to the rules considered above, there remains a 
known geometrically unchangeable and statically determinable subsystem, 
or only one supporting surface, then the original system is geometrically un-
changeable and statically determinable. 

Using the analysis of the structure (analysis of the order of formation)  
of the system, it is easy to establish in which part of the system there are re-
dundant links and in which part of the system they are lacking. Thus, systems 
of irregular structure and systems with degenerate configurations can be  
revealed. 

Any system in a degenerate configuration, instantly changeable or in-
stantly rigid, can be considered both statically indefinable and geometrically 
changeable. The structure of such systems lacks connections in one direction 
and at the same time there are redundant connections in other directions. 

It is the presence of superfluous links that gives the degenerate system the 
properties of a statically indeterminate system, namely: the ability to have 
initial internal forces in the absence of load. And this property leads to a stat-
ic criterion for instantaneous variability or instantaneous rigidity. 

1. If in a system with a zero degree of freedom (W = 0), i.e. in a system 
formally geometrically unchangeable and statically determinate, there may 
be initial internal forces (forces due to prestressing), then such a system is 
instantaneously changeable or partially statically indeterminate, and partially 
geometrically changeable. In the latter case, it is necessary to conduct a kin-
ematic analysis of the system by fragments. 
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2. If in a system with a positive degree of freedom (W > 0), i.e. in a sys-
tem formally geometrically changeable, there may be initial internal forces 
(prestressing forces), then such a system is instantaneously rigid or has stati-
cally indeterminate fragments in its composition. 

The connections in such systems, from the point of view of geometric 
changeability and mobility, are not arranged correctly. 

For example, in an instantaneously changeable system (Figure 1.47), the 
node C is fastened from horizontal displacement by the bar AC. The bar BC 
also eliminates the horizontal displacement of the node C and is redundant. 
At the same time, there is no any link in the system that would eliminate the 
vertical displacement of the node C. However, such an offset can only be 
infinitesimal: as soon as the node C moves off the line AB, the dyad bars AC 
and BC will no longer lie on one straight line and further displacement of the 
C node will become impossible without deformation of the AC and BC bars. 
From a static point of view, in this system initial forces without load are pos-
sible, for example, due to cooling or displacements of supports. 

 

 
 

Figure 1.47 
 

In the cable truss (Figure 1.40) in the middle panels, from the point of 
view of its formation by the method of triangles, two diagonal bars are clear-
ly absent. Therefore, this truss must have two degrees of freedom. At the 
same time, it has four support bars, one of which (horizontal) is superfluous. 
Total degree of freedom W = 1. But precisely because of the presence of this 
extra connection (one of the horizontal support bars) in a given geometrically 
changeable system, only infinitely small displacements are possible. From a 
static point of view, this system at W=1>0 also allows preliminary tension. 
This means that this system is instantaneously rigid. 

A disk connected to the support surface by three support rods formally 
should have a zero degree of freedom. But if the three support rods con-
verge in one support hinge (Figure 1.48), the system will remain geomet-
rically changeable (there is freedom of rotation about the axis of the sup-
port hinge), while the hinged immovable support has an extra (for a plane 
case) support rod. 
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Figure 1.48 
 

The hinge-rod disc DFB (Figure 1.49), formed by the method of trian-
gles, is connected to the fixed points A and C by the L-shaped rods AD 
and CF and is supported by hinged movable support B with the vertical 
support rod, i.e. it is connected to the supporting surface by three rods-
discs ( 0W  ). But the lines on which the ends of these three rods-disks 
lie intersect at one point O, which is the center of instant rotation. Initial 
efforts are possible in the system due to jacking up of the central support. 
Therefore, this system is instantaneously changeable. 

Examples of some other systems of irregular structure are shown in 
Figure 1.50 (the system is geometrically variable, though 2W   ) and in 
Figure 1.51 (a system with a statically indeterminate fragment is instanta-
neously changeable at 3W   ). 

 

 
 

                       Figure 1.49                              Figure 1.50                     Figure 1.51  

 
1.6. Matrices in Problems of Structural Mechanics 

 
When carrying out calculations based on computer technology, dis-

crete schemes of structures and matrix calculus methods are used in  
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structural mechanics. The loads acting on the structure are represented in 
the form of a load vector (matrix-column), the components of which are 
the values of the specified loads, numbered in a certain order. The calcu-
lation results will be presented not in the form of diagrams of internal 
forces or displacements, but in the form of force vectors and displace-
ment vectors, in which the values of internal forces in specific sections 
and the values of displacements of specific points in given specific direc-
tions will be listed. 

So the loads applied to a simple beam (Figure 1.52) can be represent-
ed by a third-order vector 

 

1 1 2 3[ ] ,TF q F M


 
 

and the loads applied to the beam truss (Figure 1.53), by a fifth-order  
vector  

 

1 1 2 5[ ... ] .TF F F F


 
 

 
 

Figure 1.52                                                  Figure 1.53 
 

To find bending moments in five characteristic sections of the beam 
(Figure 1.52) and internal forces in thirteen rods of the truss (Figure 1.53) 
from the given loads, it is enough to construct, respectively, the influence 
matrix of bending moments ML  for the beam and the influence matrix of 

longitudinal forces NL  for the truss, the rods of which must be numbered 
beforehand. Then use the matrix formulas 

 

1 2, ,M NM L F N L F 
 

 
 

where 

1 

F3 

F5 

F4 F2 F1 

M3 
q1 

F2 

3

4
52 
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1 11 12 13

2 21 22 23

51 52 535

,
... ... ...... M

M m m m

M m m m
M L

m m mM

   
   
    
   
   

  


, 

 

11 12 151

21 22 252

13,1 13,2 13,513

...

...
,

... ... ... ......

...

N

n n nN

n n nN
N L

n n nN

  
  
   
  
  

   


. 

 
The element ikm  of the influence matrix of bending moments is a 

bending moment in a characteristic beam section number i, caused by a 
unit load number k. The element ikn  of the influence matrix of the longi-
tudinal forces is the force in the rod number i of the truss from a unit val-
ue of the external force 1kF  . 

Using a suitably constructed an influence matrix of displacements D, 

we can find the vector 


 of displacements of given points in given direc-
tions due to external forces given by the vector :F


 

 

,DF 
 

 
 

where  
 

1 11 1 1

1

...

... , ... ... ... , ...

...

F k

nF n nk n

F

D F

F

       
             
            

 
. 

 
The symbol nF  denotes the displacement of a point (section) number 

n in the direction of the force 1nF   applied at this point, caused by a 

given load. The element nk  of the influence matrix of displacements D 
is equal to the displacement of a point (section) number n in the direction 
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of the force 1nF   caused by the force 1kF  , and is called the unit dis-
placement. 

Thus, the use of influence matrices is based on the principle of independ-
ence of the action of forces, the principle of superposition. According to this 
principle, the total effect of several forces is equal to the sum of the effects of 
each force individually. At the first stage, the calculation is reduced to the 
calculation of internal forces and displacements from a single external forces 
and the construction of influence matrices. At the second stage, using the 
matrix formulas forces and displacements from any combination of loads are 
calculated with the help of computer. 

The displacement influence matrix D is also called the flexibility (com-
pliance) matrix. The flexibility matrix allows you to express displacements 
through external forces. The square flexibility matrix can be inverted and a 
new matrix R, which is called the stiffness matrix, can be obtained: 

 
1.R D  

 
The stiffness matrix allows you to express external forces through the 

displacements of points to which these forces are applied 
 

.F R 


 
 
Without going into detail we note that the flexibility and stiffness ma-

trices are widely used in the analyses of statically indeterminate systems, 
as well as in the dynamics and stability of structures. On the basis of ma-
trix calculus, modern design and computing complexes have been created 
for analyzing structures using computers. 
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THEME 2. STATICALLY DETERMINATE SYSTEMS. 
MAIN CHARACTERISTICS.  

ANALYSIS METHODS UNDER FIXED LOADS 
 

2.1. Concept of Statically Determinate Systems. 
Main Characteristics 

 
One of the main tasks of structural mechanics is to determinate the inter-

nal forces in the elements of a structure. The methods for their determination 
depend on those assumptions that are accepted for calculation. The division 
of systems into statically determinate and statically indeterminate depends 
on these assumptions. According to some assumptions, the same design 
scheme is considered to be statically determinate, while the others describe 
it as statically indeterminate. 

With a strict formulation of the calculation problem, it is necessary to de-
fine the internal forces taking into account the deformable state of the struc-
ture. In this case, as a rule, all systems are statically indeterminate. 

In a real linearly deformable system, deformations and displacements are 
small. Their influence on the distribution of internal forces is neglected. The 
calculation is carried out according to the so-called undeformed design 
scheme. It is assumed that the geometry of the deformed structure coincides 
with the geometry of the original undeformed structure. 

 
Statically determinate systems are those systems in which all inter-

nal forces can be determined only from equilibrium equations. 
 
The main properties of statically determinate systems are the fol-

lowing: 
1. A statically determinate system has no redundant constraints (links), 

i.e. 0W  . When at least one link is removed; the statically determinate 
system becomes a geometrically changeable system. 

2. Internal forces in statically determinate systems are independent of 
the elastic properties of the material and the dimensions of the cross sec-
tions of the elements. 

3. Changes of temperature, settlements of supports, slight deviations 
in the lengths of the elements do not lead to occurrence of additional 
forces in a statically determinate system. 
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4. A given load in a statically determinate system corresponds to one 
single possible picture of the distribution of internal forces. 

5. The self-balanced load applied to the local part of the system caus-
es an appearance of internal forces in the elements of that part only. In 
the remaining elements of the system, the internal forces will be zero 
(Figure 2.1). 

 

 

 
 

Figure 2.1 
 

2.2. Sections Method 
 

A bending moment   ,M  longitudinal  N  and transverse  Q  forces, 

which are internal forces in a cross section of an element of a plane system, 
can be integrally expressed through normal    and tangential    stresses 

(Figure 2.2).  
The sign of the bending moment M  depends on the sign of curvature of 

the bended bar and the selected direction of the axes of the external fixed 
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coordinate system (Figure 2.3). If the axis is directed in the opposite direc-
tion, then the curvature sign, and hence the moment sign, will be reversed. 

 

 
 

Figure 2.2 

 

 
 

Figure 2.3 
 

When constructing bending moment diagrams, the positive ordinate of 
the moment is drawn in the direction of convexity of the bended axis, i.e. the 
diagram of moments is plotted on the stretched fibers of the element. 

The transverse force is considered positive if it tends to rotate the cut off 
part of the bar clockwise (Figure 2.4, a). The bar parts separated by the cross 
section are spaced apart in Figure 2.4. 
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Longitudinal force is considered positive if it causes stretching of the bar 
(Figure 2.4, b). 

 

 
 

Figure 2.4 
 

To determine the internal forces ,M  Q  and ,N  equilibrium equa-
tions are used, which can be written in one of three forms: 

1. The sum of the projections of all the forces on each of the two co-
ordinate axes and the sum of their moments relative to any point 1C  ly-
ing in the plane of the forces must be equal to zero: 

 
0,X   0,Y   

1
0.CM   

 
2. The sums of the moments of all forces relative to any two centers 

1,C  2C  and the sum of the forces projections onto any axis X  not per-

pendicular to the line 1 2C C  should be equal to zero:  
 

0,X   
1

0,CM   
2

0.CM   

 
3. The sums of the moments of all forces relative to any three centers

1,C  2C  and 3,C  not lying on one straight line, should be equal to zero: 
 

1
0,CM   

2
0,CM   

3
0.CM   

 
The ways of using these equations to determine the internal forces 

depend on a given system structure. 
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When using the way of simple sections, at first, the studied system is 
divided into two independent parts by the section in which the internal 
forces must be determined, and then the action of one part by the other is 
replaced by the desired internal forces. To determine them, the equilibri-
um equations are compiled (in any of the forms listed above). Then these 
equations are solved, provided, that the support reactions of the studied 
system are calculated in advance. For example, determining the efforts in 
the frame cross-section k (Figure 2.5, a), we can consider the equilibrium 
of the right-hand part of the frame (Figure 2.5, b) and make equations: 

 
 

3 0;right
kX F N    

 
 

2 0;right
B kY V F Q     

 

2 1 3 2 0.k B kM V b F b F h M      
 

Having solved them, we define the efforts ,kN  kQ  and .kM  A posi-
tive sign of the found force indicates that the given direction of the force 
is valid. 

 

 
 

Figure 2.5 
 
When choosing the form of the equilibrium equations should strive to 

ensure that the problem is solved in a most simply way: each equation,  
if possible, should contain only one unknown force.  
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Using the methods of forming geometrically unchangeable systems (see 
Theme 1), the rigid connection of the left and the right parts of the frame, for 
example, in the cross-section k (Figure 2.5, a) can be represented in a dis-
crete view, i.e. in the form of some simple links. With a certain positions of 
links in the cross-section, the force in a single link (link reaction) will be 
equal to the corresponding internal force, i.e. ,kN  kQ  or .kM  

Possible variants of the links location in the cross-section k  are 
shown in figures 2.6, a, …, c. The efforts in the links that correspond to 
the required internal forces are also indicated there. 

 

 
 

Figure 2.6 
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In this way, any rigid cross-section of a solid rod can be considered as a 
rigid node connecting two parts of a structure. Such a rigid node can always 
be approximated by three simple links. This approximation is used for de-
termining internal forces by static and kinematic methods, for constructing 
influence lines for internal forces, and for other problems. 

A variation of the static method for determining efforts is the way of 
dividing the system under study into many separate fragments. Compos-
ing equilibrium equations for each of them, taking into account, of 
course, internal forces (they are unknown) in the cross-sections separat-
ing fragments, we obtain for a statically determinate system a complete 
system of equations, the solution of which gives values of unknowns. 

We divide, for example, the frame (Figure 2.7, a) into three frag-
ments, shown in Figure 2.7, b. The total number of unknowns is nine: 
four support reactions, three unknowns in cross section D  and two in 
cross section C . For each of the three fragments (disks), we can create 
three independent equations in any of the previously listed forms. Solv-
ing a joint system of linear equations of the 9th order will enable us to 
find all the unknowns. 

Further expansion of this method of calculating efforts is associated 
with the division of a given system into separate elements and nodes. 
Read about it in the textbook (theme 15). 

 

 
 

Figure 2.7 
 

2.3. Links Replacement Method 
 

Consider the application of this method to the calculation of the truss, 
shown in Figure 2.8, a.  
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The truss is statically determinate. Its structure can be represented in 
the form of three disks (triangles 3-5–6, 4–6–7 and rod 1–2), pairwise 
connected by two links. Since the intersection points of rods 1–3 and 2–5, 
2–4, and 1–7 and node 6 (poles of mutual rotation of the disks) do not lie 
on one straight line, the truss is not instantaneously changeable structure. 

A truss cannot be calculated by nodes isolation method, without sol-
ving the system of equilibrium equations for all nodes. It is also impossi-
ble to apply the method of simple sections, since there is no section  
dividing the system into two parts, in which there will be no more than 
three unknown forces. 

The essence of the links replacing method is that one of the links of a 
given system is removed, and its action is replaced by an unknown force. 
In order for the system to remain geometrically unchangeable, another link 
is introduced into it. With a good arrangement of this connection, the new 
system (it is called a replacing system) is simpler to analyze. Static equiva-
lence of the given and replacing systems will be observed when X  be-
comes equal to the true force in the selected rod. In this case, the reaction 
in the introduced additional link will be equal to zero. Zero effort in an 
additional connection is a condition for writing an equation from which 
the force X  is determined. 

Let consider at an example. In a given truss (Figure 2.8, a), we will 
remove rod 1–2, and its effect on nodes 1 and 2 will be replaced by forc-
es 1.X  We introduce an additional link (support) in the sixth node.  
The replacing system obtained by such transformations is shown in  
Figure 2.8, b. The efforts in its rods are easily determined by the nodes 
isolation method. 

Performing its calculation, we use the forces superposition principle. 
First we find the forces in the rods when loading the system with a given 
external load (Figure 2.8, c). We will denote them , .i k FN   The force in the 

additional support connection – 1FR  (index 1 means the number of the ad-
ditional connection, the index F  indicates the cause of the force). For the 
sizes adopted in Figure 2.11, a, we obtain 1 0.4023 .FR F   

Let us calculate the replacing system for the action 1 1X   (Figu- 

re 2.8, d). The efforts in the rods will be denoted ,1.i kN   The force in the 

additional connection – 11r  (the first index, as before, is the number of 
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the additional connection; the second indicates the reason that caused  
the effort). In the case under consideration this reaction is equal to

11 0.1380r  . 
 

 
 

Figure 2.8 
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Since the total reaction of the additional support is equal to zero, we 
can write the equation 

 

11 1 1 0,Fr X R                                       (2.1) 
 

from which we find  
 

1
1

11

2.915 .FR
X F

r
     

 
If it turned out that 11 0,r   then this would be a sign that the given 

truss is instantaneously changeable structure. 
Subsequent calculation of the truss can be performed by nodes isola-

tion method, or, if all , ,i k FN   ,1i kN   are known, the forces in the rods of 

a given truss can be calculated by the formula  
 

, ,1 1.i k i k F i kN N N X     

 
Let us consider another example. A multi-span beam (Figure 2.9, a) is 

easily calculated by the simple section method. However, in order to bet-
ter understand the essence of the links replacement method, we will 
show its calculation with this method. 

In the given beam, we remove the support connections at the points 
B  and D . Their action on the beam is replaced by forces 1X  and 2.X  
Let us introduce additional moment links at the points A and ,C  i.e. 
close the hinges. The replacement system obtained by these transfor-
mations is shown in Figure 2.9, b or, in a more familiar image form, in 
Figure 2.9, c.  

Let us construct the bending moment diagrams in the replacing beam 
caused by given load (Figure 2.9, d), unit force 1X  (Figure 2.9, e) and unit 

force 2X  (Figure 2.9, f). The values of the moments in additional con-
straints caused by these loads are shown in the figures.  

From the conditions of static equivalence of the given and replacing 
beams it follows that the forces (moments) in the first and second addi-
tional links must be equal to zero. Defining them according to the princi-
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ple of independence of the action of forces, we obtain the following sys-
tem of equations: 

 

11 1 12 2 1

21 1 22 2 2

0;

0.
F

F

r X r X R

r X r X R

   
   

                             (2.2) 

 

Let us write the equations in numerical form: 
 

1 2

2

4 9 80 0;

4 10 0.

X X

X

   
  

 

 

Solving them, we find 1 14.375 ,X kN  2 2.5 .X kN  
The diagram of moments for a given beam is constructed by the ex-

pression 
 

1 1 2 2.FM M M X M X    
 

It is shown in Figure 2.9, g. 
It is clear that in general, the number of deleted and additional links 

can be large. 
Let us write the system of equations (2.2) in matrix form: 

 

11 12 1 1

21 22 2 2

0,F

F

r r X R

r r X R

     
      

     
  or  0.FLX R 

 
           (2.3) 

 

The solution of system (2.3), written in the form 
 

1 ,FX L R 
 

                                       (2.4) 
 

possible if only the determinant of the matrix L  is not equal to zero: 
 

0.Det L   
 

Therefore, if the determinant is equal to zero: 
 

0,Det L   
 

it serves as a sign of instantaneously changeability of a given system. 
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Figure 2.9 
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2.4. Kinematic method 
 

The kinematic method is based on the principle of virtual displace-
ments, which allows to obtain the necessary conditions for the equilib-
rium of the system. 

Virtual displacements of a system are any combinations of infinitesi-
mal displacements of points of a system allowed by its connections. Vir-
tual displacements, unlike real ones, do not depend on the given external 
actions. They are determined only by the type of system itself and the 
type of connections superimposed on the system; these are purely geo-
metric concepts. 

We assume that during the transition of the system from the real state 
to the new one, caused by virtual displacements, the external and internal 
forces do not change. 

The work of external and internal forces performed on virtual dis-
placements is called the virtual work. Taking into account the introduced 
remarks, this work is defined as the work of constant forces on virtual 
displacements. 

The principle of virtual displacements establishes the general condi-
tion for the equilibrium of the deformed system. It is formulated as fol-
lows if the system is in equilibrium under the action of external forces 
applied to it, then for any infinitely small virtual displacements of the 
points of this system, the sum of the works of its external and internal 
forces is zero. Let us show a formal record of this principle in the form: 

 
( ) ( )

int 0,virt virtW A                                    (2.5) 

 

Where ( )virtW  – virtual work of external forces,  

      ( )
int

virtA  – virtual work of internal forces. 

Introducing the concept of the degree of freedom of the rod system 
(Sec. 1.4), we assumed that its rods are absolutely solid, non-deformable. 
Given this assumption, and also taking into account the concept of virtu-
al displacements, it should be noted that in the initial state for a statically 
determinate system (W = 0) it is impossible to specify virtual displace-
ments. How is then to apply the principle of virtual displacements to the 
calculation of such systems? 
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To use this principle in the problems of calculating statically determi-
nate systems, the main axiom of the mechanics of non-free material bod-
ies are applied – the principle of removing constraints (links). Let us re-
move any constraint (support, or from among those shown in Figure 2.6) 
and apply to the system, in addition to the given external forces, the 
force S that could occur in the removed constraint. Such a system will be 
a mechanism with one degree of freedom (W = 1) and, therefore, allows 
a possible new position, determined by one parameter. Its equilibrium 
state is possible only if the unknown force S in the remote constraint is 
equal to the true value. 

Let us provide the principle of virtual displacements to the mecha-
nism received. The work of internal forces along the entire length of 
non-deformable elements is zero. Considering the effort in the removed 
constrain as an external force, the equation of virtual works of all forces 
can be written as: 

 
( ) 0,virt

i i k kW S F                                 (2.6) 
 

where iS  – is the required effort in connection ,i  i  – is displacement 
in its direction; 

 kF  – k - th generalized force, k  – displacement in the direction 

of the force .kF  
If the direction of the force and the corresponding displacement coin-

cide, then the work is positive. 
Since the calculation is carried out according to an undeformed 

scheme, in the system with one degree of freedom, all displacements i  

and k  are expressed in terms of one parameter. Having divided each 

term of equation (2.5) by this parameter, we solve it relatively .iS  

For example, determining the reaction BV  in the support B  of a two-
span statically determinate beam (Figure 2.10, a), we remove the support 
rod at a point B  and apply an unknown force BV  at this point. The posi-
tion of the mechanism with one degree of freedom is determined by one 
parameter. To such parameter, we take the rotation angle   of the beam 
AB  (Figure 2.10, b). Since ,  by the definition, is an infinitesimal angle, 

then 1 2 ,l    4 ,B l    2 5 ,l    3 5 .l    
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Figure 2.10 
 
The equation of works (2.5) can be written as: 
 

( )
1 5 34 2 5 5 0.virt

BW V l F l F l F l        
 

The solution gives 17.5 .BV kN  
When determining the force in the rod 1–2 of the truss beam (Figu- 

re 2.11, a), the sequence of actions remains the same as in the previous 
example. By removing the rod 1–2 in the given beam we get the mecha-
nism. Virtual displacements of the mechanism will be set as follows. 
Keeping point C stationary, move support B vertically. In this case, the 
bar CB rotates by an infinitesimal angle   (Figure 2.11, b). Considering 
the known support reaction as an external force, we compose the equa-
tion of virtual work. 

From the equation of virtual work 
 

1 2
1

2 4 2 2 0
2BN V q        

 
we find 1 2 35N    kN. 
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Figure 2.11 
 

2.5. Statically Determinate Multi-Span Beams and Compound 
Frames. Main Characteristics 

 
Statically determinate multi-span beams are a collection of simple 

beams connected to each other at the ends by hinges, as a rule, not coin-
ciding with the supports. 

Before starting the calculation of a multi-span beam, it is necessary to 
control its geometric changeability. 

Kinematic analysis of multi-span beams is performed according to the 
rules outlined in Theme 1. After checking the degree of freedom accord-
ing to formula (1.1), you should analyze the interaction scheme of simple 
beams in a multi-span structure (analyze the structure of the system). To 
do this, mentally divide the multi-span beam (Figure 2.12, a) through the 
hinges and analyze each simple beam for changeability. The beam AB is 
fixed by three correctly located support rods (links); this beam is un-
changeable.  It may be called the main beam or primary ones. 

Then, the state of the beam adjacent to it on the right side is consid-
ered. This beam CD has its own vertical support link at point D. The 
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hinge, which connects the beams at point C, can be replaced by two sup-
port links. We draw (Figure 2.12, b) the position of the beam CD above 
the main one (gravity is transmitted from upper beam to lower one). A 
beam CD will be called an auxiliary beam or secondary one. Considering 
in the same way, we show the position of the upper auxiliary beam EF. 
The design scheme shown in Figure 2.12, b is called interaction scheme. 

 

 
 

 
 

Figure 2.12 
 

Interaction schemes for multi-span beams can be varied. As an exam-
ple, figure 2.12, d shows the interaction scheme for a multi-span beam in 
figure 2.12, c. There are two main beams AB and DE. Beams BC and 
FG are auxiliary. 

Using the interaction schemes, the sequence for calculating a multi-
span beam is established. First, the uppermost auxiliary beams are calcu-
lated, then below located beams are analyzed taking into account the in-
teraction forces (pressure from the upper beams is transmitted to the 
lower beams). 
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E x a m p l e. We perform a kinematic analysis and show the se-
quence of plotting the bending moments and transverse forces  diagrams 
in a three-span statically determinate beam (Figure 2.13, a). The position 
of the design cross-sections on the beam is shown. 

 

 
 

Figure 2.13 
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The degree of freedom of the beam is calculated by the formula: 
 

03 2 3 4 2 3 6 0.W D H S          
 

Breaking the beam by cross-sections 7, 10 and 12, we notice that the 
considered beam has two main parts: a simply supported beam AB (its 
length from section 1 to section 7 is 14.6 meters) and a cantilever beam 
(5 meters long from section 12 to a rigid fixed support at point E). The 
cantilever beam is rigidly fixed; there are three constraints at the right 
end of this beam. The horizontal beam AB is unmovable due to its bind-
ing (using non-deformable rods in the longitudinal direction at the seg-
ment 7–15) to rigid fixed support E. Considering that the beam (it can be 
called an insert) in the section 10–12 does not have its own support, we 
form the interaction scheme corresponding to figure 2.13, b. 

Having determined the support reactions and the necessary efforts in 
the uppermost beam (on the interaction scheme), taking into account the 
interaction forces, it is necessary to transfer the pressure to the lower 
beams and continue their calculation. An illustration of the sequence of 
calculation of separate beams is on figure 2.13, c. 

The internal forces diagrams for separate beams, which are being lo-
cated horizontally in accordance with the position of the beams on a giv-
en scheme, form the internal forces diagrams for a multi-span beam 
(Figure 2.13, d, e). 

 
E x a m p l e. For statically determinate compound frame (Figu- 

re 2.14, a) it is required to perform a kinematic analysis and to build the 
internal forces diagrams. 

We perform kinematic analysis of the frame. Degree of freedom: 
 

03 2 3 3 2 2 5 0.W D H S          
 

We check the correctness of the frame structure and find its main and 
secondary parts. To do this we cut the design scheme (Figure 2.14, a) 
through the hinges which are connecting the disks, and analyze the mo-
bility of each part. Having executed section only through the hinge K, we 
notice that each part of the frame (both left and right) is a geometrically 
changeable system. If we execute section only through the hinge F, then 



56 

the left part of the frame will be geometrically unchangeable, unmova-
ble: it will be a three-hinged frame with correctly located links (con-
straints). It will be the main part of the system.  

 

 
 

 
 

Figure 2.14 
 
The right frame part will be also unchangeable, since it has its own 

support rod at point C, and at point F it is connected to the fixed frame 
by means of a hinge. The support rod at point C does not pass through 
the hinge F. The right part of the frame is auxiliary or secondary. 

Then, a sequence of calculations is performed. It is characteristic of 
multi-span statically determinate beams. 
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Determining support reactions for the auxiliary frame: 
 

7.6 18 7.6 3.8 0; 68.4 .F C CM H H kN        
 

100 0; 100 .F FY V V kN     
 

Determining support reactions for the main frame: 
 

5.04 3.1 68.4 1.24 100 6.3 0;

6.2 3.8 46 3.1 1.55 100 9.4 68.4 7.6 0;

56.80 ; 138.23 .

right
B BK

A B B

B B

M H V

M V H

H kN V kN

        

           
 


  

 

8.84 3.1 46 3.1 1.55 0;

3.8 6.2 46 3.1 4.65 100 3.2 68.4 3.8 0;

11.60 ; 104.37 .

left
A AK

B A A

A A

M H V

M H V

H kN V kN

       

           
 


  

 

Verifying the calculated support reactions for the main frame: 
 

68.4 11.60 56.80 68.4 0;

46 3.1 100 104.37 138.23 46 3.1 100 0.
A B

A B

X H H

Y V V

      
          




 

 

Figure 2.15 shows the diagrams of bending moment ( M ), shear (Q ) 
and longitudinal ( N ) forces. 

Checking the balance of rigid nodes. 
Figure 2.15, g shows the forces in the rods in sections adjacent to  

the node. 
We compose the equilibrium equations of all forces (in this case, only 

internal) acting on the node. 
 

0; 11.60 49.53 cos 92.60 sin 0; cos 0.9285;Х           
sin 0.3719;   

 

0; 104.37 49.53 sin 92.60 cos 0.Y          
 

We write the equilibrium equations of the forces shown in figu- 
re 2.15, h. 
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0; 56.80 68.40 31.19 sin 24.97 cos 0;X           

0; 138.23 100 31.19 cos 24.97 sin 0;Y           

0; 104.14 215.86 320 0.nodeM      
 

 
 

Figure 2.15 
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To check the balance of the frame as a whole, it is necessary to find 
support reactions and compose the required equilibrium equations. Prac-
tical actions are as follows: the frame elements are cut off from the sup-
ports; in the cross-sections of the elements the internal forces are shown, 
the numerical values of which are taken from the constructed diagrams; 
equilibrium equations are written in any of the previously listed forms. 

In the considered example, after cutting the frame from the support 
(the picture is not shown), we are restricted by two equations: 
 

0; 18 7.6 11.60 68.40 56.80 0;X         
0; 4.6 3.1 100 104.37 138.23 0.Y         
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THEME 3. DETERMINATION OF EFFORTS  
FROM MOVING LOADS 

 
3.1. Concept of Moving Load. Concept of Influence Lines 

 
This theme discusses methods for calculating beam systems on the 

action of moving loads. 
Moving are the loads that can move along the structure without 

changing the direction of action. A moving load is a load from automo-
bile and railway transport, bridge cranes, etc. There is a wide variety of 
such loads. The pressure from such loads on the beam (or other struc-
ture) may be transmitted in the form of concentrated forces or may be 
distributed over some area (or length, in the case of plane systems). 

To develop a general theory of calculation for all types of moving 
loads is a difficult task. The simplest elementary moving load is the con-
centrated unit force F = 1. Based on the knowledge about the influence 
of this force on any factor, it is possible to obtain a solution for any 
number of concentrated forces and loads distributed according to any law 
using the principle of independence of the forces action. 

 

 
 

Figure 3.1 
 

When the force F = 1 moves along the beam (Figure 3.1), the dis-
placements of all its points are observed. For example, if the force is lo-
cated at x = 1.5 m, then the displacements of the characteristic points of 
the beam (their coordinates are recorded in the left-hand column of Table 
3.1) will be equal to the values indicated in the table for x = 1.5 m. Based 
on these values, you can construct the diagram of vertical displacements 
of the beam points. It is shown in Figure 3.2. The diagrams of the beam 
displacements at other positions of force can be constructed by corre-
sponding values of the displacements of characteristic points using the 
data in Table 3.1. 
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Table 3.1 
 

The coordi-
nate of the 

point on the 
beam 

The position of the force F = 1 on the beam 
х=1.5 m х=3.0 m х=4.5 m х=7.5 m 

х=0.0 m 0 0 0 0 
х=1.5 m -2.53 -3.09 -1.97 2.11 
х=3.0 m -3.09 -4.50 -3.09 3.38 
х=4.5 m -1.97 -3.09 -2.53 2.95 
х=6.0 m 0 0 0 0 
х=7.5 m 2.11 3.38 2.95 -5.63 

Note: 1. Apply a common factor 1/EI for all displacements. 
 

 
 

Figure 3.2. The diagram of vertical displacements of the beam points due to F = 1,  
located at the point x = 1.5 m 

 

 
 

Figure 3.3. Influence line for the vertical displacement of one beam point with  
the coordinate x = 7.5 m 
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Using the displacement values in the last row of the table, we const-
ruct a displacements graph of the point at the end of the beam (x = 7.5 m) 
for all possible positions of the force F = 1 (Figure 3.3). Such a graph is 
called influence line for the displacement of the beam point with the co-
ordinate x = 7.5 m. Carrying out similar considerations, it is possible to 
construct influence lines for internal forces (M, Q, N), which are stresses 
in some cross-sections of the beam, etc. 

Definition. Influence line is a graph which shows variation of 
some particular factor (force, displacement, etc.) in the given 
cross-section of a structural element in terms of position of unit 
concentrated dimensionless force of a constant direction. 

Note the differences in the concepts of “Influence line for an effort” 
and “Diagram of efforts”. 

The efforts diagram is a graph of some type efforts in all cross-
sections of the structure loaded by fixed load. Influence line for the effort 
shows the effort in only one, fixed cross-section of the structure loaded 
by the moving force equal one. 
 

3.2. Static Method of Constructing  
Influence Lines for Internal Forces 

 
The previously described method of constructing influence lines re-

quires a large number of beam calculations. The way in which the factor 
under investigation (in the previous example, displacement) is written as 
a function of the unit force position is more practical. This dependence 
can be obtained from the equations of equilibrium of a solid (equations 
of statics). The corresponding method of constructing influence lines is 
called static method. 
 

3.2.1. Influence Lines for Support Reactions in a Simple Beam 
 

We show construction of influence lines for efforts in a one-span 
beam (Figure 3.4 a). 

We take the origin of the coordinate axes at point A. The X axis is di-
rected along the axis of the beam, the Y axis is directed up. The position 
of the force F = 1 is determined by the x coordinate. On the Y axis we 
will plot the value of the investigated factor. 
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Writing the equation of the moments of all forces relative to point B, 
we obtain an expression that sets the dependence of the support reaction 
on the position of the force: 

 
0; ( ) 0;B AM V l F l x     

 
( )

.A

F l x
V

l


                                   (3.1) 

 
Showing this relation graphically, we obtain the influence line for 

support reaction AV  (Figure 3.4, b).  
Expression (1.1) is the equation of a straight line. To draw a line on a 

plane, it is enough to know the position of two points through which it 
passes. Find them, taking F = 1. 

For x = 0 (the force is located above the support A) it follows from 
formula (3.1) that 1;AV   for lx   (the force is located above the sup-

port В) we obtain 0.AV   
A straight line drawn through these two points represents the required 

influence line for support reaction (Figure 3.4, b). 
In this example and in all subsequent ones positive ordinates of influ-

ence lines are drawn upward (in the direction of Y-axis). 
We define the dimension of ordinates of the influence line for support 

reaction. If we take F = 1 in expression (1.1), then the right side of the 
equation can be written as follows: 

 
( )

.
l x

l


                                           (3.2) 

 
Comparing the record in the right-hand side of equation (3.1) and the 

right-hand side in the form (3.2) means dividing the left and right sides 
of equation (3.1) by F. In this case, equation (3.1) is transformed to 

 

.AV l x

F l


                                         (3.3) 
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Figure 3.4 



65 

Recording on the left of the equal sign indicates the dimension of the 
ordinates of the influence line for support reaction as a derivative of the 
dimensions of force factors. The dimension of the support reaction AV  
and the force is F — kN. Consequently, the ordinates of influence line 
for support reaction have no dimension, they are dimensionless. 

Analyzing these arguments in relation to the dimension of the ordi-
nate, we obtain: 

 

[dimension of the ordinate of influence line for effort] = 
 

 
dimension of the

dimension of the

required factor

force
 . 

 

The unit ordinate at point A is the scale of the graph (a segment of 
any length is taken to be equal to one). 
 

Writing the equation of the moments of all forces relative to point A, 
we obtain the expression for determining the support reaction .BV  

 

0; 0;A BM V l Fx    
 

.B
Fx

V
l

                                           (3.4) 

 

To construct a line, we find the position of two points through which 
it passes. Taking F = 1, we get: 

For x = 0 (the force is located above the support A) it follows from 
formula (3.4) that 0;BV   

for lx   (the force is located above the support В) we obtain 1.BV   
The influence line for support reaction is shown in Figure 3.4, c. 

 
3.2.2. Influence Lines for Efforts in Cross-Sections between Beam  
Supports 

 
Design scheme of the beam is shown in Figure 3.4, a. The section k  

on the beam is fixed. Internal forces in section k  of a beam depend on 
the position of a moving load F=1. The analytical dependences of the 
efforts in this section depend on the position of the force. It is located to 
the right-hand of section k or to the left-hand. Therefore, when determi-
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ning the force in a cross-section, it is necessary to know where the force 
is located. The equilibrium equations are simpler, if when compiling 
them, we consider that part of the beam on which there is no force. 

First, we construct influence lines for bending moment in the section k. 
1. The force F = 1 is located to the right-hand of the section k   

(а   x   2l c ). 
From the equilibrium equations of the left side of the beam (Figure 3.4, d) 
it follows: 
 

0; 0; ; ; .left
A k k A A kk

l x l x
M V a M M V a V M a

l l

 
       

 

Influence line for kM  on the right side of the beam has the form of a 

straight line. We set for x  the value from the interva (а   x   l ): 
 

, ;k
l a ab

x a M a
l l


    

 

, 0.kx l M   
 

The straight line constructed at these points is extended to the con-

sole, the length of which equals 2c  (Figure 3.4, f). Hatching (vertical) is 

performed on the operating range (а   x   2l c ). 

2. The force F = 1 is located to the left-hand of the section k   
(–с1   x   а). 
From the equilibrium equations of the right side of the beam (Figure 3.4, 
d) it follows: 

 

0; 0; ; ; .right
B k k B B kk

x x
M V b M M V b V M b

l l
       

 
We construct a straight line. 
 

0, 0;kx M   
 

, .k
ab

x a M
l

   
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The straight line constructed at these points is extended to the con-

sole, the length of which equals 1c . (Figure 3.4, е). Hatching (vertical) is 

performed on the operating range (– 1c    x   a). 

[dimension of the ordinate of inf. line for bending moment] = 
 
 

.
kNm

m
kN

  

Remark:  
1. The formula k AM V a  can be read as follows: inf. line kM  = 

= (inf. line ) .AV а  

2. Analysis of the form of the inf. line kM  shows that on the ver-

ticals passing through the support points, the inclined lines cut off seg-
ments equal to the distances from the supports to the section k .  

3. The top of the line of influence is located under the cross-
section k . 
 

We construct influence lines for shear force in the section k. 
1. The force F = 1 is located to the right-hand of the section k   

(а   x   l ). 
From the equilibrium equations of the left side of the beam (Figure 3.4, d) 
it follows: 
 

0; 0; ; .left
A k k A k

l x
Y V Q Q V Q

l


      

 

Influence line for kQ  on the site of the position of the force can be 

constructed using inf. line AV , or by the position of the points through 
which the line passes.  

2. The force F = 1 is located to the left-hand of the section k   
(0   x   а). 
From the equilibrium equations of the right side of the beam (Figure 3.4, d) 
it follows: 
 

0; 0; ; .right
B k k B k

x
Y V Q Q V Q

l
        

 

Influence line for support reaction is shown in Figure 3.4, g. 
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[dimension of the ordinate of inf. line for shear force] = 
 
 
kN

kN
 — ordi-

nates are dimensionless. 
 

3.2.3. Influence Lines for Efforts in the Cantilever Beam Sections 
 
The design scheme of the beam is shown in Figure 3.5, a. 
Construct influence lines for bending moment and shear force in the 

section k. 
We take the origin of the coordinate axes in the section k. 

1. The force F = 1 is located to the right-hand of the section k   
(0   x   b ). 
From the equilibrium equations of the right side of the beam (Figure 3.5, b) 
it follows: 

 

0; 0; ; .right
k k kkM M Fx M Fx M x        

 

0; 0; ; 1.right
k k kY Q F Q F Q      

 
For x = 0 (the force is located in cross-section k) 0, 1;k kM Q   

при bx   (the force is located above at the end of the console) 
,kM l   1.kQ   

2. The force F = 1 is located to the left-hand of the section k   
(–a   x   0). The right side of the beam (Figure 3.5, c) is not loaded, 
therefore 0, 0.k kM Q   

Influence lines for efforts is shown in Figures 3.5, d, e. 
Let us once again draw attention to the interconnection of the con-

cepts “influence line for effort” and “diagram of efforts”. Figure 3.5 e 
shows the diagram of bending moments due to the force F = 1, appended 
at the end of the console. The ordinate on the diagram in cross-section k  

is equal to the ordinate of the influence line kM  at the end of the con-

sole (Figure 3.5, e). 
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Figure 3.5 
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3.3. Kinematic Method for Constructing Influence Lines 
for Internal Forces 

 
The kinematic method of constructing influence lines is based on the 

principle of virtual displacements (Section 2.4), according to which for 
a system that is in equilibrium under the action of external forces applied 
to it, the sum of the work of its external and internal forces on any infini-
tesimal displacements is zero. 

Consider the design scheme of a simple beam (Figure 3.6, a). 
 

 
 

Figure 3.6 
 
We construct influence line for support reaction .BV  
We eliminate the right support, replacing its action with a reaction 

BV  (Figure 3.6, b). The resulting system has become a mechanism. For 
the possible displacements take displacement caused by the rotation of 
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the beam around the point А at an angle φ  (Figure 3.6, b). We write 
down the sum of the forces acting on the system on the considered infini-
tesimal displacements: 

 
( ) 0.B BF x V      

 
From this equation we get: 
 

( )
.B

B

F x
V





                                        (3.5) 

 
Different positions of the force F = 1 lead to a change in the value of 

the corresponding displacement ( ).x  In this case, all possible values of 
( )x  along the length of the beam show a diagram of the vertical dis-

placements of the beam points. The denominator in the formula (3.5) is a 
constant. B  is a scale factor. Assuming B  is equal to unity, we get: 

 
( ).BV x                                            (3.6) 

 
Consequently, the outline of the influence line coincides with the  

diagram of the vertical displacements of the points of the beam (Fi-
gure 3.6, c). 

From the ordinate ratios in Figure 3.6,b we get 
( )

,
B

x x

l





 which, for 

F = 1, corresponds to the expression (3.4) obtained by the static method. 
Construct influence lines for bending moment in the section k. 
The design scheme of the beam is shown in Figure 3.7, a. We elimi-

nate the constraint in the cross-section k through which the moment is 
transmitted (we set the hinge), replacing its action with the moment KM  
(Figure 3.7, b). The figure shows the interaction forces of the left and 
right parts of the beam. We will set the possible displacements to the 
obtained mechanism in the direction of the moments KM  action, taking 
the angle of mutual rotation of the end cross-sections equal to unity. The 
ordinates between the initial position of the beam and the new (broken) 
form a diagram of the beam displacement (Figure 3.7, b).  
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Figure 3.7 
 
The virtual work of external and internal forces on the taken beam 

displacements is equal to zero: 
 

( ) 1 0.KF x M     
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At F = 1 we get δ( ),KM x  that corresponds to the above conclu-

sion: influence line KM  (Figure 3.7, d) coincides with the diagram of 
the vertical displacements of the beam points. 

Using the notation given in Figure 3.7,a, shows that it is exactly coin-
cides with the influence line previously constructed by a static method 
(Figure 3.4, e). 

Possible displacements, in fact, are infinitesimal. Therefore, when an-
alyzing the relations in Figure 3.7, you can use simplifications of the 
form: 

1 1 2 2tg ; tg .       
 
From the data in Figure 3.7, c, provided that 1 2φ φ 1,     we  

obtain: 
 

1 2 1 1 1 1; ; ; .k
b ab

l b b l b a
l l

              

 

2 1 2 2 2 2; ; ; .k
a ab

l a a l a b
l l

              

 
The ordinate of influence line in cross-section k is equal to the ordi-

nate obtained by the static method (Figure 3.4, f). 
Let us construct the influence lines for shear force in the section k 

(Figure 3. 8, а). 
We eliminate the constraint in this cross-section, in which a shear 

force can arise. The connection of the left and right parts of the beam 
after this is carried out by means of two horizontally arranged links 
through which longitudinal forces and bending moments can be transmit-
ted. On the newly formed design scheme, we show in the cross-section 
the positive directions of the shear forces for both parts of the beam 
(Figure 3.8, b). Giving the unity value for mutual displacement of the 
beam ends along the directions of the shear forces, we obtain a diagram 
of the beam's displacements (Figure 3.8, c), the outline of which com-
pletely corresponds to influence line for shear force (Figure 3.8, d). 
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Figure 3.8 
 

3.4. Determination of the Effort from Fixed Load 
Using Influence Lines 

 
By the definition, each of the ordinates of the inf. line for S represents 

the value of the effort S when the acting force F = 1 is located on the 
beam above this ordinate. If a unit force is not located above the ordi-
nate, but a force whose value is equal F is located there, then the effort 
caused by its action will be F times more, i.e. the effort will be equal to 
the product of the force F and the ordinate of the influence line for the 
effort under this force: .S Fy  
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If n concentrated vertical forces act on the beam (Figure 3.9), then 
the force S, based on the principle of superposition, should be calculated 
by the formula: 

 

1 1 2 2
1

... .
i n

n n i i
i

S F y F y F y F y



                          (3.7) 

 
In this expression, the value of the looking downward force is taken 

with the plus sign, the value of the looking upward force is taken with 
the minus sign. 

 

 
 

Figure 3.9 
 
Consider the action on the beam of a load distributed according to an 

arbitrary law ( ),q x  (Figure 3.10, a). On this beam, we select a section of 

infinitely small length .dx  The concentrated force replacing the distrib-
uted load on this section is equal to ( ) .dF q x dx  (Figure 3.10, a). The 

elementary effort dS  from the action of the force dF  is: 
 
( ) ( ) .dS dFy q x y x dx   

 
Integrating this expression along the length of the loading section,  

we find: 
 

( ) ( ) .
b

a

S q x y x dx                                      (3.8) 
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Figure 3.10 
 

If a uniformly distributed load acts on the beam ( )q x q  (Figu- 
re 3.10, b), then 

 

( ) ( ) .
b b

a a

S qy x dx q y x dx q                              (3.9) 

 

Here   is the area of influence line S corresponding the uniformly 
distributed load action site. In figure 3.10, b the area   is highlighted by 
hatching. It should be kept in mind that the ordinates of the influence 
lines located above the axis of the beam are positive, the ordinates of the 
lines of influence located below the axis of the beam are negative. The 
area below the axis is negative. 

Let us consider the action on the beam of a concentrated moment
.M  (Figure 3.11). Replace the moment with a couple of forces F  with 

arm :x  .
M

F
x




 With the help of the formula (3.7) we find: 

 

0 0

0

lim ( ) lim

lim .

x x

x

M M y y y
S y y y M

x x x x

y dy
M M

x dx

   

 

                    


 


 (3.10) 
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Figure 3.11 
 

The moment directed in a clockwise direction, is considered positive. 
The value of the derivative of the function that describes the outline of 
influence line is calculated at the point of application of the concentrated 
moment. 

On a straight section of the influence line, the calculation of the effort 
S will be a simpler action if the concentrated moment is replaced by a 
pair of forces on any length of this section. 

With the simultaneous action on the beam of all considered force fac-
tors (concentrated forces, distributed load, concentrated moment), the 
effort S is calculated by summing the results caused by each factor indi-
vidually based on the principle of superposition. 

 
E x a m p l e. Using influence lines to determine bending moments 

and shear forces in sections 1k , 2k  and 3k  of the beam (Figure 3.12, a) 
with the following data:  

 

1 2 1 24 ; 10 ; 2 / ; 5 / ; 3 .F kN F kN q kN m q kN m M kNm      
 
The cross-section 2k  is infinitely close to the support A on the right-

hand, the cross-section 3k  is infinitely close to the support A on the l 
eft-hand. 

The influence lines for efforts are shown in Figures 3.12, b ... 3.12, e. 
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Figure 3.12 
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We find the efforts: 
 

1
4 ( 1) 4 ( 4 / 3) 10 1 10 2 2 ( 1/ 2 1 3)

2 ( 1/ 2 2 4 / 3) 5 1/ 2 2 9 1/ 2 0 1/ 2 2 61 ;

kM

kNm

               

             
 

 

2 3
4 ( 3) 2 ( 1 / 2 3 3) 21 ;k kM M kNm            

 

1
4 1 / 3 4 ( 2 / 9) 10 ( 1 / 3) 10 1/ 3 2 (1 / 2 1/ 3 3)

2 ( 1/ 2 2 / 9 2) 5 ( 1 / 2 2 / 3 6 1/ 2 1/ 3 3)

1 / 2 0 1/ 2 ( 2 / 3) 6.833 ;

left
kQ

kN

              

             
      

 

 

1
4 1/ 3 4 ( 2 / 9) 10 ( 1/ 3) 10 ( 2 / 3) 2 (1/ 2 1/ 3 3)

2 ( 1/ 2 2 / 9 2) 5 ( 1/ 2 2 / 3 6 1/ 2 1/ 3 3)

1/ 2 0 1/ 2 ( 2 / 3) 16.833 ;

right
kQ

kN

               

             
      

 

2
4 1 / 3 4 ( 2 / 9) 10 2 / 3 10 1 / 3 2 (1 / 2 1 / 3 3)

2 ( 1 / 2 2 / 9 2) 5 (1 / 2 1 9) 1 / 3 1 1 / 3 0 33.167 ;

kQ

kN

             

             
 

 

3
4 1 2( 1 3) 10 .kQ kN         

 

Note. Other factors can be defined similarly if the corresponding in-
fluence lines are constructed for them. 

Let us turn to Figure 3.3, which shows influence line of the vertical 
displacement of the beam point with a coordinate 7.5x m . 

Using the displacements given in Table 3.1 for characteristic points, 
we find an approximating polynomial that describes the outline of influ-
ence line and the first derivative of it: 

 

2 3 4

5

( ) [1.59222 0.130259 0.0190617 0.0115391

1
0.000768176 ] .

p x x x x x

x
EI

    


 

2 3

4

( )
[1.59222 0.260519 0.0571852 0.0461564

1
0.00384088 ] .

dp x
x x x

dx

x
EI

    


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Consider loading a beam with a uniformly distributed load and a 
concentrated moment at a point 7.5x m  (Figure 3.13). 

 

 
 

Figure 3.13 
 

Find the displacement, knowing the outline of influence line and the 
first derivative: 

 
7.5

7.5
0

( )
( ) .vert

x
dy dp x

Z q M q p x dx M
dx dx      

 
7.5

7.50

1 ( ) 1
( ) 9.5625 ; 4.46444 .

x

dp x
p x dx

EI dx EI
    

 

7.5
9.5625 4.46444 86.6961

10 2 .vert
xZ

EI EI EI       

 
3.5. Influence Lines for Efforts in Case  

of the Nodal Transfer of the Load 
 

Consider the construction design scheme shown in Figure 3.14, a. 
The main bearing element of this scheme is the beam AB. It is called the 
main beam. The main beam bears cross beams. They are presented on 
the design scheme in the form of support rods for short longitudinal 
beams located at the upper level. Short beams are essentially flooring 
performed in the simplest case of planks. The load (force F = 1 is shown 
on the design scheme) applied to the upper short beams is transferred to 
the main beam at specific points, which are called nodes.  

Hence the name follows: nodal transfer of the load. 
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Figure 3.14 
 

Nodal transfer of the load is used frequently in constructions. This 
takes place in arches with a superstructure, when transferring the load to 
the nodes of the trusses through the ribbed slabs of the roof (or floor) and 
in other cases. 

We show features of influence lines construction in case of nodal 
transfer of the load. Firstly, we construct influence line for bending mo-
ment in the cross-section k  under the assumption that the superstructure 
above the main beam is absent and the force moves directly upon the 
main beam (Figure 3.14, c).  

The force F = 1 located on the beam bc (Figure 3.14, b) causes the re-
actions 

 

b c
l x x

V and V
l l


   
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Considering them as the forces of interaction between the beam bc 
and the beam AB, we obtain the loading of the beam AB. By formula 3.7 
we find the moment in the cross-section :k  

 

.k b c
l x x

M m m
l l


   

 
The equation of the line passing through the points:  

 

.0 ; ,k b k cx M m x l M m     
 

is obtained.  
Consequently, the location of the force F = 1 on the beam bc corre-

sponds to a straight line (it is also called a transfer line) passing through 
the tops with the ordinates 0x   and x l  of the previously constructed 

influence line .kM  A similar result will be obtained when the force 
moves upon the other beams of the upper structure: on the section of 
each beam, influence line for effort will be straight. 

So, to construct the influence line for an effort S with the nodal trans-
fer of the load, you must: 

– construct the influence line for an effort S as if the moving unit load 
would be applied directly to the main beam. 

– transfer the nodes on the constructed influence line S and obtain the 
ordinates on it; 

– connect the tops of the ordinates with straight lines. 
Figures 3.14, c, d show the influence lines for kM  and .kQ  
 

3.6. Construction of the Influence Lines for Efforts  
in Multi-Span Beams 

 
With the known interactive scheme of a multi-span beam, the con-

struction of influence line for effort S starts with the beam to which ana-
lyzed factor belongs. Plotting is performed by the static or kinematic 
method. Having received the influence line for this beam, we should 
continue the construction for the adjacent upward beam, that is, we 
should consider the position of the force F = 1 on it. The ordinate of in-
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fluence line in the hinge connecting the lower and upper beams is the 
same. The second ordinate on the upper beam is equal to zero and is lo-
cated above the support of this beam, since the force F = 1 is above the 
support, the effort S = 0. Having two known ordinates, we show the posi-
tion of the line along the entire length of the beam. The process of con-
structing is repeated for all upward beams. 

Figure 3.15 shows the influence lines for the efforts in a multi-span 
beam. 

 

 
 

Figure 3.15 



84 

3.7. Determining the Most Unfavorable Position  
of Moving Loads with Influence Lines 

 
The most unfavorable position of a moving load upon the structure is 

the position in which the considered effort reaches its maximum (extre-
me) value. 

 
3.7.1. Concentrated force action 

 
Consider the case when there is one single concentrated force F on 

the beam (Figure 3.16). Influence line for the effort S is built. For any 
position of the force on the beam, the effort S will be calculated by  
the formula (3.7): S Fy . The effort will be maximum if the force

constF   is located above the maximum ordinate of influence: 

max max .S Fy  It is clear that min min.S Fy  
 

 
 

Figure 3.16 
 
3.7.2. Action of a Set of Connected Concentrated Loads 

 
The set of connected moving loads, shown in figure 3.17, simulates 

the pressure of train wheels or other transport. The distance between the 
forces does not change when the train moves. All forces are located on a 
certain section of the triangular influence line (Figure 3.17, b). The force 

iF  is located on the left, at a very small distance from the vertex of the 
influence line. 

The effort S from the shown load is calculated by the formula (3.7):  
 

1 1 2 2 ... ... .i i n nS F y F y F y F y       
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Figure 3.17 
 
When the train moves, all ordinates ( )y y x  are variable. Conse-

quently, the effort ( )S S x  is also variable. We are looking for the ex-

tremum of the function ( ).S x  

The first derivative of S  has the form: 
 

1 2
1 2 ... ... ( )tg tg ,i n

i n left i right
dS dy dy dy dy

F F F F R F R
dx dx dx dx dx

           

 

where        1 2 ... tg , tg( ) tg .i ndy dy dy dy

dx dx dx dx
            

 

leftR  – is the resultant of forces located to the left of the force iF  (on 

influence line of length a); 
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rightR  – is the resultant of forces located to the right of the vertex of 

the influence line. 
The function ( )S x  is not smooth, when the force iF  is transferred to 

a portion of the right branch of influence line, the first derivative idy

dx
 

changes sign from “plus” to “minus” in form of a break of the first kind. 

Therefore, you cannot use equality 0
dS

dx
  to calculate the extreme  

value .S  
A note on the change of the first derivative sign means that the ex-

treme value S  will be observed when one of the concentrated forces is 
located above the top of the influence line. Suppose this happens when a 
force iF  is located above the vertex of the influence line. Then this force 

is called critical and is denoted as follows: .кр iF F  

The condition for determining the critical force is written in the form 
of two inequalities: 

 
( )tg tg ;

tg ( )tg .

left cr right

left right cr

R F R

R R F

   

   
                          (3.11) 

 
If both inequalities are satisfied simultaneously, then iF  is a critical 

force, and the corresponding load position is called the unfavorable one 
(estimated). If inequalities are not satisfied at the same time, then we 
must assume that another force will be critical and verify that the criteri-
on (3.11) is satisfied. 

Inequalities (3.11) can be given a graphical interpretation. It is given 

that tg , tg ,
c c

a b
     inequalities show the ratio of equivalent uni-

formly distributed loads on the left-hand and right-hand sections of in-
fluence line (Figure 3.17, d). 

The action of two related forces (Figure 3.18) can be regarded as a 
special case of the considered load case. In all the loads considered in the 
example, the movement of the load from right to left is received.  
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For the first loading (Figure 3.18, b) (1)
max 1 1 2 2;S F y F y   for the se-

cond loading (Figure 3.18, c) (2)
max 1 3 2 1.S F y F y    

From the found values of the efforts, we select the larger one 
(1) (2)

max max maxmax{ , }S S S  and obtain information of the position of the 
load is the unfavorable one and its force is critical. 

For the third loading (Figure 3.18, d) (3)
1 4 2 5min ;S F y F y   for the 

fourth loading – (4)
1 5min ,S F y  if the position of force 2F  outside the 

beam is possible. 
Further, from the found values of the efforts, we choose the smaller 

one (3) (4)
min min minmin{ , }.S S S  Then, from the found values of the efforts, 

we choose the smaller one. The position of the load at which the effort 
will be minimal is the unfavorable. 

 

 
 

Figure 3.18 
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3.8. Influence Matrices for Internal Forces 
 

We define an effort Sk in the cross-section k of the beam (Figure 3.19) 
caused by the concentrated forces ( 1,..., )iF i n  applied to that beam. 
For a linearly deformable system, any internal force Sk in the cross-

section k, ( 1, )k m  can be determined by the expression: 
 

1 1 2 2 ... ,k k k kn nS s F s F s F                            (3.12) 
 

where kis  – is the effort in cross-section k due to 1.iF   
 

 
 

Figure 3.19 
 

We represent expression (3.12) in the expanded form for 1, .k m  
 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

... ;

... ;

...

... ;

n n

n n

m m m mn n

S s F s F s F

S s F s F s F

S s F s F s F

   
   

   

                     (3.13) 

 

In matrix form, the system of equations (3.13) has the following form: 
 

.SS L F
 

                                        (3.14) 
 

Here S


 is a vector of effort; F


 – a load vector; SL  – an influence ma-

trix for the efforts :S


 
 

1

2

...

m

S

S
S

S

 
 
 
 
 
 


;   

1

2

...

n

F

F
F

F

 
 
 
 
 
 


;   

11 12 1

21 22 2

1 2

...

...

...

...

n

n
S

m m mn

s s s

s s s
L

s s s

 
 
 
 
 
 

.          (3.15) 
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Influence matrix SL  is a linear operator that transforms the load vec-
tor into the efforts vector. 

If bending moments are determined, then the matrix SL  is denoted 

ML  and is called the influence matrix of bending moments. In this case, 
equations (3.14) are written in the form: 

 
,MM L F

 
                                          (3.16) 

 
where M


 – is a vector of bending moments in the calculated sections, 

and the matrix is written as follows: 
 

11 12 1

21 22 2

1 2

...

...
.

...

...

n

n
M

m m mn

m m m

m m m
L

m m m

 
 
 
 
 
 

                            (3.17) 

 
In the general case, this matrix is rectangular; its dimension is 

( ).m n  In the case when concentrated forces are applied in the calculat-

ed sections, the matrix ML  is a square matrix of order n  

Since kim  is the bending moment in the cross-section k caused by the 

force 1,iF   then, analyzing the matrix ,ML  we notice that in each of its 
row the ordinates of the corresponding influence lines of the bending 
moments are recorded. For example, in the second row of the matrix ML  

the ordinates of influence line 2M  are recorded. 

In the second column of the matrix ,ML  the ordinates of the ben-

ding moments diagram 2 ,M  calculated in the regarded cross-sections 

of the beam loaded by the dimensionless force 2 1,F   are recorded. 
Consequently, the influence matrix can be formed in two ways: 1) by 

columns – using unit force diagrams; 2) by rows – using influence lines 
for efforts. 

When calculating the transverse and longitudinal forces, the equations 
have the form: 

 



90 

;QQ L F
 

                                        (3.18) 
 

.NN L F
 

                                        (3.19) 
 

In equations (3.18) and (3.19) QL  and NL  are the influence matrices, 

respectively, of shear and longitudinal forces. 
Note that when forming the influence matrix of shear forces ,QL  the 

calculating cross-sections must be taken to the left-hand and to the right-
hand of each concentrated force.  

Generally, a beam or other structure can be loaded not only with con-
centrated forces, but also with distributed loads or concentrated mo-
ments. It is possible to construct a matrix of influence that takes into ac-
count these types of loads. However, the computational process in this 
case will become more complicated, the universal character of the com-
putational algorithm will be lost. Therefore, it is recommended that such 
loads should be converted by bringing them to equivalent concentrated 
forces according to the general rules of mechanics. When using the load 
nodal transfer method for this purpose, the position of the nodes is as-
signed depending on the features of the given load. The spacing of the 
nodes may be regular or irregular. With a small step length, the accuracy 
of the calculation increases, but the dimension of the problem increases. 
In addition to the nodes in the spans of beams, their location above the 
hinges and supports should be provided. 
 

E x a m p l e. For the beam shown in Figure 3.20, a, we compose the 
influence matrix of bending moments, calculate bending moments in the 
calculated sections, plot the diagrams of bending moments caused by the 
given load and the equivalent concentrated load, compare them. 

The positions of the cross-sections are shown in the beam scheme. 
With a formal approach to the calculation, the position of the required 
cross-sections should be assigned not only in the spans of the beam, but 
also where obviously known that bending moments are equal to zero  (in 
this example, cross-sections 1, 5, 9). The load converted to concentrated 
forces is shown in Figure 3.20, b. The influence matrix of bending mo-
ments will have the order (9  9): 
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0 0 0 0 0 0 0 0 0

0 4 / 3 2 / 3 0 1 / 2 1 / 3 1/ 6 0 2 / 9

0 2 / 3 4 / 3 0 1 2 / 3 1/ 3 0 4 / 9

0 0 0 0 3 / 2 1 1 / 2 0 2 / 3

0 0 0 0 0 0 0 0 0 .

0 0 0 0 0 1 1/ 2 0 2 / 3

0 0 0 0 0 1/ 2 1 0 4 / 3

0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0

ML

 
    
   
    
 
 

 
 
 

 
  

 

 

The explanations for the matrix formation: the values of the ordinates 
of the diagram 9M  (Figure 3.20, d) are recorded in the ninth column of 

the matrix, the values of the ordinates of the influence line for 2M  
(Figure 3.20, d) are recorded in the second row. 

Performing the load transformation, we get the vector of concentrated 
forces in the form: 
 

1 2 3 4 5 6 7 8 9[ ; ; ; ; ; ; ; ; ]

[0; 45; 45; 17.5; 15; 35; 35; 17.5; 10] .

T

T

F F F F F F F F F F

kH

 




 

 

Having preliminary information that the bending moments are equal 
to zero in sections 1, 5, and 9, we can delete the corresponding rows of 
the matrix .ML  Since the concentrated forces above the supports do not 
affect the outline of the diagram of moments, columns 1, 4, and 8 can be 
deleted in the matrix. As a result, we obtain a matrix ML  of size (6  6): 

 

4 / 3 2 / 3 1/ 2 1/ 3 1/ 6 2 / 9

2 / 3 4 / 3 1 2 / 3 1 / 3 4 / 9

0 0 3 / 2 1 1/ 2 2 / 3
.

0 0 0 1 1 / 2 2 / 3

0 0 0 1/ 2 1 4 / 3

0 0 0 0 0 2

ML

   
    
   

   
 
 

 
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Figure 3.20 
 

The corresponding load vector has the form: 
 

2 3 5 6 7 9[ ; ; ; ; ; ] [45, 45, 15, 35, 35, 10] .T TF F F F F F F kN 


 
 

The vector of bending moments in the cross-sections is calculated by 
the formula (3.16): 

 

2 3 4 6 7 8[ ; ; ; ; ; ]

[67.22; 44.44; 68.33; 45.83; 39.17; 20.00] .

T

T

M M M M M M M

kNm

 

 


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Figure 3.21, a shows the diagrams of bending moments in the beam 
with a given load. Figure 3.21, b shows one in the beam with a converted 
load. The ordinates in the considering cross-sections are the same. 

 

 
 

Figure 3.21 
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THEME 4. CALCULATING OF THREE-HINGED ARCHES  
AND FRAMES 

 
4.1. General Information and Principles of Creation 

 
A system consisting of two disks interconnected by a hinge and 

joined with the ground using immovable hinged supports is called a 
three-hinged system (Figure 4.1). 

Three-hinged systems where discs are represented by polygonal bars 
are called three-hinged frames (Figure 4.2). 

 

 
 

Figure 4.1                                                               Figure 4.2 
 
Three-hinged systems where the disks are represented by curved bars 

are called three-hinged arches (Figure 4.3). According to their shape, 
arches are divided into circular, parabolic, sinusoidal, etc. arches. 

Three-hinged systems are formed by the triangles method. Therefore, 
they are geometrically unchangeable and statically determinate. All three-
hinged systems belong to the class of thrusting systems (Figures 1.24, 
4.1–4.3). 

To eliminate the effect of the horizontal pressure due to the thrust on 
the underlying structures, the supporting hinges of the three-hinge sys-
tems can be connected by horizontal hinged rods or ties. In such cases, 
one of the supports should be hinged movable. For example, a three-
hinged arch with a tie (or a tightrope) at the level of the supports is 
shown at Figure 4.4.  

Three-hinged arches with a tie are externally non-thrusting systems. 
A vertical loads cause only vertical reactions in supports of such arches. 

Arches with an elevated (Figure 4.5) or polygonal complex tie (Fi-
gure 4.6) are applied in order to rationally use the space under the arches. 
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Figure 4.3
 

Figure 4.4
  

 
Figure 4.5 

 
Figure 4.6 

 
4.2. Determining Reactions and Internal Forces  

in Three-Hinged Arches 
 
Consider a symmetrical three-hinged arch with supports at the same 

level, loaded with vertical force (Figure 4.7, a). 
We compose the equilibrium equation in the form of the sum of the 

projections of all external forces on the horizontal axis: 
 

0.A BX H H    
 
From this equilibrium equation it follows that: 
 

.A BH H H   
 
That is, the horizontal reactions of the three-hinged arch with the 

vertical load are opposite in direction, identical in value and equal to 
the unknown value of H. This value of H and the horizontal reactions 
themselves are called the three-hinged arch thrust. 
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Figure 4.7 
 
Three reactions of the arch: VA, HA and HB, intersect at the support 

point A. Therefore, the vertical reaction VB of the arch can be determined 
from the sum of the moments of all external forces relative to this point A. 

 

0,A BM Fa V l     from 0.B B
Fa

V V
l

   

 
The resulting expression for determining the vertical reaction VB of 

the arch (Figure 4.7, a) is completely equivalent to the expression that 
can be obtained for determining the vertical reaction of a simple single-
span articulated beam (Figure 4.7, b). Such a beam is called equivalent 
relative to the arch. An equivalent beam has the same span and the 
same vertical load as the arch. 

Accordingly, from the sum of all external forces moments relative 
to the support point B, the vertical reaction VA of the support A can be 
found. 

 

( ) 0,B AM V l F l a      from 0( )
.A A

F l a
V V

l


   

 
Consequently, the vertical reactions of the three-hinged arch under 

vertical load are equal to the vertical reactions of the equivalent beam. 
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Therefore, vertical reactions of the arch are often referred to as beam 
reactions. And this is true with arbitrary vertical load. 

Three independent equilibrium equations have already been used to 
determine the support reactions of the arch. The equilibrium equation 
in the form of the sum of all external forces projections on the vertical 
axis is usually used to verify the correctness of the vertical reactions 
calculation. 

 
0.A BY V V F      

 
There is just a need to find the value H of the arch thrust. To deter-

mine the arch thrust, we will use the distinguishing property of the arch 
compared to the equivalent beam. In the intermediate hinge C of the 
arch (Figure 4.7, a) there is no bending moment. There is no hinge in 
the corresponding cross-section of the equivalent beam, and the bend-
ing moment in this cross-section of the beam (Figure 4.7, b), in the 
general case, is not equal to zero. 

Therefore, defining the bending moment in the hinge C of the arch 
as the sum of the moments relative to this cross-section of all external 
forces, for example, located to the left of it, we must equate the result-
ing expression to zero. 

 

A ( ) 0.
2 2

left
C C

l l
M ΣM V F a Hf       

 
Taking into account, that 

 

0( ) ,
2 2A C
l l

V F a M    

 

where 0
CM  is the bending moment in the cross-section C of the equiva-

lent beam, we can eventually find the thrust H. 
 

0

.CM
H

f
  
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Thus, the arch thrust is directly proportional to the beam bending 
moment in cross-section C of the equivalent beam and inversely pro-
portional to the rise of the arch in the intermediate hinge. 

To check the calculated thrust value, the beam bending moment in 
the cross-section C is usually calculated once again through the sum of 
the moments of external forces applied to the beam to the right of this 
section. For our example, it is possible to write 

 

0
B .

2
right

C C
l

M M V    

 
After calculating the support reactions, the determination of the inter-

nal forces in the cross-sections of three-hinged arches is usually carried 
out by the section method, as in any other bars systems. 

Consider the features of applying the section method to a three-
hinged arch with supports at the same level (Figure 4.7, a). To do this, 
we cut the arch at some cross-section x-x and consider the equilibrium of 
the left-hand part (Figure 4.8). The action of the discarded right-hand 
part is replaced by three internal forces: bending moment ,xM  transver-

sal force ,xQ  and longitudinal (normal) force .xN  

The bending moment xM  in the cross-section x-x of the arch is cal-
culated as the sum of the moments of only external forces acting on the 
left part of the arch relative to the center of gravity of the cross-section x-x  
of the arch 

 

  .left
x x A FiM M V x F x a Hy      

 
Taking in to account, that 
 

0( ) ,A xV x F x a M    
 

where 0
xM  is the bending moment in the cross-section x-x of the equiv-

alent beam (Figure 4.7, b), the bending moment in the cross-section x-x 
of the arch may be finally found using a formula: 

 
0 .x xM M Hy   
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Figure 4.8 
 

The obtained expression shows that the bending moments in the arch 
are less than the bending moments in the equivalent beam.  

It is possible to say that bending moments in the arch have been ob-
tained by algebraic summation of the bending moments in the equivalent 
beam and the bending moments in the arch, caused by the action of the 
thrust H only that is seen as two mutually balanced forces applied to the 
curvilinear bar. The diagram of bending moments due to only the thrust 
repeats the outline of the arch axis, while the thrust itself serves as a pro-
portionality coefficient. 

The bending moments in the beam due to a vertically downward di-
rected load are always positive. Bending moments in the arch from a 
thrust directed inside the span are always negative. Therefore, the thrust 
creates an unloading effect for the arch. 

We find the transversal force in the x-x section of the arch from the 
sum of the projections of all the forces applied to the left part of the arch 
(Figure 4.8), normal to the axis of the arch in the section under consider-
ation. Solving the resulting equation relative to ,xQ  we obtain 

 

cos cos sin

( )cos sin ,
x A x x x

A x x

Q V F H

V F H

      
    

 

or 
0cos sin .x x x xQ Q H     
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Thus, the transversal force in the cross-sections of the arch is ex-
pressed through the projection of the beam transversal force 0

xQ  in the 
corresponding cross-section of the equivalent beam and the projection of 
the thrust H on the normal to the arch axis in the considered cross-
section of the arch. 

Similarly, from the sum of the projections of all the forces on the axis 
tangent to the axis of the arch in section x-x, we find the longitudinal 
force in this section of the arch 

 
sin sin cos

( )sin cos ,
x A x x x

A x x

N V F H

V F H

       
     

 

 
or 

0 sin cos .x x x xN Q H      
 

The longitudinal force in the cross-section of the arch is also expres-

sed through the projection of the beam transversal force 0
xQ  in the cor-

responding cross-section of the equivalent beam and the projection  
of the thrust H on the tangent to the arch axis in this cross-section of 
the arch. 

Compared with simple beams in three-hinged arches, the transversal 
forces, as well as bending moments, are much smaller. But unlike the 
beams, longitudinal compressive forces occur in the cross-sections of the 
arches. While no longitudinal forces are present in simple horizontal 
beams with vertical loads. 

The final diagrams of the internal forces in the arch along its entire 
length would be curvilinear. Curvilinear diagrams, like any graphs, can 
be built by calculating the values of the corresponding internal forces in 
a number of predetermined (characteristic) cross-sections of the arch (the 
more sections are presented the more accurate the diagram). 

Let us illustrate the definition of reactions and internal forces using 
the example of a circular three-hinged arch with a span of l = 36 m with 
a rise of f = 8 m (Figure 4.9). The arch is loaded with a concentrated 
force F = 24 kN and a uniformly distributed load q = 2 kN/m. 
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Figure 4.9 
 

The equation of the arch axis, i.e., the equation of the circle arc pass-
ing through three points A, C and B, is described by the expression 

 

2 2( ) ( ) .
2

l
y x f R R x      

 
The radius R of the circle and the trigonometric functions of the angle 

of inclination of the tangent to the axis of the arch are calculated by the 
formulas: 

 
2 24 2

, sin ( ) , cos( ) .
8 2

f l l x R f y
R x x

f R R

   
      

 
The vertical reactions of the arch supports are calculated with the 

formulas: 
 

0

0

24 24 2 18 9
25 ;

36
24 12 2 18 27

35 .
36

A A

B B

V V kN

V V kN

   
  

   
  
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The sum of the projections of all external forces on the vertical axis 
confirms the result: 

 

25 35 24 2 18 60 60 0.Y          
 

In the cross-section C, the bending moment of the beam is calculated 
and checked: 

 

0

0

25 18 24 6 306 ,

35 18 2 18 9 306 .

left
C C

right
C C

M M kN m

M M kN m

      

        




 

 

Then the arch thrust is calculated: 
 

0 306
38.25 .

8
CM

H kN
f

    

 

To plot the diagrams of the internal forces it is necessary to assign 
characteristic arch cross-sections. Firstly, these are the supports A and B 
and the intermediate hinge C. Secondly, these are the point of application 
of concentrated force and the beginning and the end of the arch segment 
where the distributed load acts. Thirdly, these are additional intermediate 
cross-sections necessary for constructing curvilinear segments of the di-
agrams with sufficient accuracy. In this example, there are at least seven 
of these characteristic points.  

They are located along the arch span in increments of 6 m. To plot the 
diagrams of the transversal and longitudinal forces at the point of applica-
tion of the concentrated external force, it is necessary to consider two infi-
nitely close points: one to the left of the application point of the external 
force, the second to the right of this point. At this cross-section, there will 
be a jump on the indicated diagrams of the internal forces, and a fracture 
on the diagram of bending moments. When constructing diagrams of in-
ternal forces and moments, it is necessary to monitor their correspondence 
with each other and the load. The differential depen-dencies between 
bending moments, transversal forces, and the load must be fulfilled. 

To determine the geometric characteristics of the arch, calculate the 
value of the arch axis radius  

 

2 24 8 36
24.25 .

8 8
R m

 
 


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All further calculations are summarized in the following tables. Cal-
culations in tables can be performed on a calculator, plotting manually, 
using patterns and other drawing tools. But it is possible to use comput-
ers: universal mathematical and engineering software, programming lan-
guages, tabular and graphic editors and other modern software tools that 
automate the process of computing and plotting graphic objects. 

 

Table 4.1 
 

Calculation of bending moments in a three-hinged arch 
 

№ sec x Y 0
xM  -Hy xM  

A 0 0 0 0 0 
1 6 4.823 150 -184.47 -34.47 
2 12 7.246 300 -277.16 22.84 
C 18 8.000 306 -306.00 0 
3 24 7.426 276 -277.16 -1.16 
4 30 4.823 174 -184.47 -10.47 
B 36  0 0 0 

 

So, to build the below diagrams of internal forces in the arch, modern 
software was used that automates the process of performing calculations 
and graphing. The diagram of bending moments (Figure 4.10), the dia-
gram of transversal forces (Figure 4.11) and the diagram of longitudinal 
forces (Figure 4.12), are built on the horizontal projection of the arch 
axis using the graphic software. Of course, the number of characteristic 
cross-sections along the span has to be significantly increased. 

 

 
 

Figure 4.10. Diagram M 
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Figure 4.11. Diagram Q 
 

 
 

Figure 4.12. Diagram N 
 
As shown in Table 4.1, bending moments in a three-hinged circular 

arch at a given load are an order of magnitude smaller than bending mo-
ments in an equivalent beam. In the support joints and in the intermedi-
ate joint, the bending moments in the arch are equal to zero. At the point 
of application of concentrated force on the diagram of bending moments 
in the arch, a “beak”-type fracture is observed. On the diagrams of the 
transversal and longitudinal forces, there are jump discontinuities of the 
first type: 2cosF   on the transversal forces diagram Q  and 2sinF   on 
the longitudinal forces diagram .N   
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At the points where the transversal forces diagram passes through ze-
ro, there are the extremums on the diagram of bending moments. At the 
point where the segment of the distributed load begins, there is a fracture 
on the diagram of the transversal forces. In areas where the transversal 
forces diagram is ascending, the bending moments diagram is convex up. 
In areas where the transversal forces diagram is downward, the bending 
moments diagram is convex down.  

Such conclusions follow from the differential dependences known 
from the resistance of materials, according to which the transversal force 
in the cross-sections of the arch is the first derivative along the length of 
the arch arc from the function of bending moments. And the load is the 
first derivative from the transversal force function. 

 

Table 4.2 
 

Arch parameters for calculation of the  
transversal and longitudinal forces in the arch 

 

№ sec x sinφx cosφx 
0
xQ  

A 0 0.7423 0.6701 25 
1 6 0.4948 0.8690 25 

2left 12 0.2474 0.9689 25 
2right 12 0.2474 0.9689 1 
С 18 0 1 1 
4 24 -0.2474 0.9689 -11 
5 30 -0.4948 0.8690 -23 
B 36 -0.7423 0.6701 -35 

 

Table 4.3 
 

Calculation of the transversal and longitudinal forces 
 

№ sec 0 cosx xQ  sin xH  xQ  0 sinx xQ   cos xH  xN  

A 16.753 -28.39 -11.639 -18,557 -25.63 -44.19 
1 21.72 -18.928 2.797 -12.371 -33.24 -45.61 

2left 24.22 -9.464 14.756 -6.185 -37.06 -43.25 
2right 0.9689 -9.464 -8.495 -0.2474 -37.06 -37.31 
С 1.0000 0.000 1.0000 0.0000 -38.25 -38.25 
4 -10.658 9.464 -1.194 -2.722 -37.06 -39.78 
5 -19.987 18.928 -1.059 -11.381 -33.24 -44.62 
B -23.45 28.39 4.94 -25.98 -25.63 -51.61 
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4.3. Calculating a Three-Hinged Arch with a Tie 
 

Three-hinged tied arches are externally non-thrusting systems. Vertical 
loads cause only vertical reactions in supports of such arches. These verti-
cal reactions are determined as in simple beams. The horizontal reaction of 
their immovable hinged support is equal to zero under vertical loads. 

But internally such arches are thrusting systems. Their thrust is an in-
ternal longitudinal force in ties. 

To determine the tightening force, it is necessary to cut an arch by a 
section through the key hinge of this arch. For example, in a three-hinged 
arch with a complex tie it is a cross-cut 1-1 passing through the interme-
diate hinge C (Figure 4.13). The equilibrium equation of the left part of 
the arch in the form of the sum of the moments of all forces relative to 
the key hinge C gives a possibility to determine the arch thrust H. 

 

0;left
CM         0 0.

2A
l

R H f f    

 

 
 

Figure 4.13 
 

The first term in the resulting equation is the bending moment in sec-
tion C of the equivalent beam: 

 

0 .
2A C
l

R M  

 

Therefore, to determine the tightening force (thrust), the following 
expression can be obtained: 

0

0

.CM
H

f f



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The internal forces in the other members of the complex tie and in the 
cross-sections of the arch may be calculated by the usual method of  
sections. 

 
4.4. Influence Lines in Three-Hinged Arches 

 
Consider an arch loaded with a single vertical force, the position of it 

is determined by the abscissa xF (Figure 4.14, a). To determine the verti-
cal support reactions, we compose the equilibrium equations in the form 
of sums of the moments of all the forces acting on the arch relative to the 
left and right supports: 

 
0;AM        1 0;F Bx R l   

 
0;BM        1( ) 0.F Al x R l     

 
From these equations we find the functions of changing the vertical 

support reactions depending on the position of the unit force 
 

;F
B

x
R

l
       .F

A
l x

R
l


  

 
The obtained dependences of the change in the values of the support 

reactions completely coincide with the corresponding dependences for 
the support reactions of a simple two-support beam. Therefore, the influ-
ence lines for the vertical reactions (Figure 4.14, c, d) in the arch coin-
cide with the influence lines (Inf. Lin.) for the reactions in the corre-
sponding equivalent beam (Figure 4.14, b). 

The thrust H  of the arch under the action of vertical loads is deter-
mined by the expression: 

 
0

.CM
H

f
  

Hence  

 0. . . . .СInf Lin Н Inf Lin М f  
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Figure 4.14 
 

Thus, the influence line for the thrust in the arch is expressed through 
the influence line for the bending moment in the cross-section C of the 
equivalent beam (Figure 4.14, b, e), all ordinates of which are divided by 
the value of the arch rise f (Figure 4.14, f). 
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The influence lines of internal forces in the cross-sections of the arch-
es will be built using the previously obtained dependencies expressing 
the internal forces in the arches through the corresponding internal beam 
forces and the arch thrust. 

So the bending moment in the section K of the arch (Figure 4.14, a) is 
determined by the expression 

 

0 .K K KM M Hy   
 

Since the ordinate Ky  of the cross-section K of the arch is constant, 
for the influence line for MK we get 

 

   0. . . . . . .K K KInf Lin M Inf Lin M Inf Lin H y   
 

In accordance with this expression, we separately construct the influ-

ence line for the bending moment 0. . KInf Lin M  in the section K of the 
equivalent beam (Figure 4.14, g) and the influence line for the thrust H 

. . ,Inf Lin H  multiplied by a factor Ky  (Figure 4.14, h). Subtracting the 
ordinates of the second influence line from the ordinates of the first, we 
get the influence line for the bending moment in the section K of the arch 

. . KInf Lin M  (Figure 4.14, i). 
The transversal force in the cross-section K of the arch is determined 

by the dependence 
 

0 sin .K K K KQ Q cos H     
 

Therefore, the influence line for the transversal force in this arch sec-
tion can be represented as follows: 

 

   0. . . . cos . . sin .K K K KInf Lin Q Inf Lin Q Inf Lin H     

 

We build the influence line for the thrust H (Figure 4.15, b), and the 
influence line for the transversal force in the section K of the equivalent 
beam (Figure 4.15, c). Then we build intermediate influence lines, multi-

plying all the ordinates of 0. . KInf Lin Q  on cos K  (Figure 4.15, d), and 

the ordinates . .Inf Lin H  on sin K  (Figure 4.15, e). Subtracting the or-
dinates of the second from the ordinates of the first influence line, we get 
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the desired influence line for transversal force in the section K of the 
arch (Figure 4.15, f). 

 

 
 

Figure 4.15 
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The longitudinal force in the cross-section K of the arch is determined 
by the dependence 

 
0 sin cos .K K K KN Q H      

 
Accordingly, the expression 

 

   0. . . . sin . . cos ,K K K KInf Lin N Inf Lin Q Inf Lin H      

 
is used to construct the influence line for this longitudinal force. 

By building intermediate lines of influence 0( . . )sinK KInf Lin Q   

(Figure 4.15, g) and  . . cos KInf Lin H   (Figure 4.15, h), we sum up 

them. Changing the sign of the result to the opposite, we obtain the de-
sired influence line for the longitudinal force in the section K of the arch 
(Figure 4.15, i). 

 
4.5. The Rational Axis of the Arch 

 
Rational is called the axis of the arch, if bending moments in the 

cross-sections of the arch are zeros or close to zeros. 
The condition  
 

0 ( ) 0x xM M Hy x    
 

means that bending moments are absent in all cross sections of the arch. 
This condition allows you to find the equation of the rational arch axis: 

 
0

( ) .xM
y x

H
  

 
Whence it follows that under the action of vertical loads the ordinates 

of the rational arch axis are proportional to the bending moments in the 
equivalent beam having the same span and the same load as the arch. 
The reciprocal of the thrust H is in this case a proportionality coefficient. 
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For an example, we define the rational axis of a three-hinged arch 
when a vertical, evenly distributed load acts on the arch (Figure 4.16, a). 

 

 
 

a) Uniformly distributed 
vertical span load 

 

b) Uniformly distributed  
radial load 

 

Figure 4.16 
 
The reactions in the arch in this case are equal 

 

;
2A B
ql

R R R         
2

.
8

ql
H

f
  

 

The bending moment in an arbitrary cross-section x of the equivalent 
beam is defined as the sum of the moments of external forces applied to 
the beam to the left of section x: 

 

0 ( ) ( ).
2 2 2

left
x x

ql x qx
M M x qx l x      

 

Dividing the resulting expression by the thrust, we obtain the equa-
tion of the rational axis of the three-hinged arch with a uniform load over 
the span: 

 

0

2

( ) 8
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2
xM qx l x f

y x
H ql


  . 

 

Or finally 
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The resulting equation is a quadratic parabola equation. A parabolic 
arch with a load evenly distributed over the span does not have bending 
moments. Only longitudinal forces occur in the arch cross-sections. 

In the key (in the middle of the span) of the arch, the longitudinal 
force is 

 

2

.
8C
ql

N H
f

     

 
In heels (supports), the longitudinal forces are equal 
 

2
2 2 1 .

2 16A B
ql l

N N R H
f

      

 
If the arch is outlined in a circle arc, then from the equilibrium condi-

tions of an infinitesimal arch element of length ds, it can be proved that the 
arch circular axis will be rational when the arch is loaded with a uniformly 
distributed radial load (Figure 4.16, b). With a uniform radial load in a 
circular arch, there are no bending moments, and the longitudinal forces 
will be constant along the length of the arch and equal 

 
.N qr   

 
We invite the reader to carry out the corresponding evidence inde-

pendently. 
 

4.6. Three-Hinged Arches with a Superstructure 
 
Arches that serve as supporting structures for bridges usually have 

over-the-top or under-arch superstructures. The moving load on the main 
structure of such arches is not transmitted directly, but through the auxil-
iary vertical members (links) at certain points – at nodes. 

Three-hinged arches with a superstructure are generally regarded as 
statically determinate, and are complex systems in which an auxiliary 
part (over- or under-arch superstructure) rests on the main part (three-
hinged arch).  
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The analysis of systems for a moving load is carried out in the same 
way as for beams with nodal transfer of the load. Initially, the movement 
of a unit force F = 1 directly along the axis of the main arch is consid-
ered, and the influence lines for the factors under study are constructed. 
Then ordinates are fixed on these influence lines under the nodes. It can 
be proved that during load nodal transfer, sections of the influence lines 
between nodal points will be rectilinear. Therefore, if the ordinates fixed 
under the nodes are connected by straight lines, then the influence lines 
adjusted in this way will correspond to the influence lines for arches with 
a superstructure. 

 
E x a m p l e. For a three-hinged arch with a under-arch superstruc-

ture (Figure 4.17, a), draw an influence line of the bending moment in 
section K. 

Solution:  

1. First, we construct the influence line for the bending moment *
KM  

(Inf. Line *
KM ) as if the unit force F = 1 moved directly along the axis of 

the three-hinged arch (Figure 4.17, b). To construct this influence line, 
we will use the arguments presented in Section 4.4: 
 

   * 0 .K K KInf.Line M Inf.Line M Inf.Line H y    

 
The influence line for the bending moment 0

KM  arising in section K 
of the equivalence beam is shown in Figure 4.17, c, and the influence 
line for the thrust H  multiplied by Ky  is shown in Figure 4.17, d. 

For the initial data of the example: with 3 ,Kx m  it follows that: 
 

   2 2

4 4 3
3 12 3 2.25 .

12
K K K

f
y x l x m

l


       

 
The influence line *

KM  obtained by subtracting   Kinf.line H y  

from 0
Kinf.line M  is shown in Figure 4.17, e. 
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Figure. 4.17 
 

2. We correct the constructed influence line *
KM  taking into account 

the nodal transfer of the load. To do this, we calculate the ordinates of 
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this influence line under the nodal points 2, 3, 4 and 5. The ordinates un-
der the nodal points 1 and 6 have zero values (Figure 4.17, f). 

3. We connect the calculated ordinates with straight lines. The result-
ing graph is the influence line for the bending moment in the section K 
(Figure 4.17, f) under the condition that the load on the arch is transmit-
ted through the over-arch superstructure. 

 
4.7. Determining Support Reactions and Internal Forces  

in Three-Hinged Frames 
 

Consider the process of determining support reactions in a three-
hinged frame with supports at different levels (Figure 4.18). 

The frame is loaded with a horizontal uniformly distributed load of 
intensity q = 4 kN/m and a vertical concentrated force F = 12 kN. The 
expected directions of support reactions are shown in Figure 4.18. 

 

 
 

Figure 4.18 
 
As usual, we compose the sum of the moments of all external forces 

relative to the support B: 
 

4 6 1 12 2 8 4 0.B AM V H             
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Since the equation contains two unknown quantities VA and HA, we 
compose the second equation in the form of the sum of the moments of 
the left forces only, relative to the joint С: 

 

4 6 5 4 8 0.left
A ACM V H          

 
The resulting equation includes the same two unknown quantities VA 

and HA. Solving the system of two joint equations, we find the values of 
the support reactions of the right support A: 
 

10 ; 20 .A AV kN H kN   
 
Accordingly, the reactions of support B will be found from the sum of 

the moments of all external forces relative to the support A and the sum of 
the moments of only the right forces relative to the intermediate joint C: 

 
4 6 3 12 10 8 4 0,

12 6 4 4 0.

A B B

right
B BC

M V H

M V H

       

    




 

 
Solving the resulting system of two equations, we find 

 
22 ; 4 .B BV kN H kN   

 
The calculated values of all supporting reactions are positive. There-

fore, their directions shown in Figure 4.18 are valid. 
We will check the results. We compose the sum of all forces projec-

tions on the X and Y axes, as well as the sum of all external forces mo-
ments relative to, let's say, the point D in the middle of the left rack (the 
moment from the distributed load and the moment from the reaction VA 
at this point are zero, which reduces the amount of calculations): 

 
4 5 20 4 24 24 0,

10 22 12 22 22 0,

20 3 12 10 22 8 4 1 180 180 0.D

X

Y

M

       
        
           
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All three checking equilibrium equations are satisfied identically. 
Summing up, we can recommend the following rules for calculating 

support reactions in arbitrary three-hinged arches and other three-hinged 
systems with arbitrary external loads. 

Usually, four equations are composed to calculate the four support re-
actions, and three more equations are used to verify the results. 

The support reactions of the left support (VA, and HA) are calculated 
from two equations. 

The first is the sum of the moments of all external forces relative to 
the right support B: 

 
0.BM   

 
The second is the sum of the moments relative to the intermediate 

joint C of only external forces located to the left of the joint C: 
 

0.left
CM   

  
The support reactions of the right support (VВ and HВ) are calculated 

from two more equations. 
The third is the sum of all external forces moments relative to the 

right support A: 
 

0.AM   
 

Fourth is the sum of the moments relative to the intermediate joint C 
of only external forces located to the right of the joint C: 

 

0.right
CM   

 
To verify the results, the sums of all external forces projections on the 

coordinate axes and the sum of all external forces moments relative to 
any point not previously used as a moment point are written. 

After determining the support reactions, the diagrams of internal 
forces in the bars of the three-hinged frame are constructed, as in any 
other bars systems. The calculated support reactions are considered as 
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known external forces. Internal forces are calculated according to general 
rules in given characteristic cross-sections. For the considered frame 
from cross-sections with nonzero bending moments, six characteristic 
sections have been selected (Figure 4.19): this is the beginning and end 
of each bar, the middle of the distributed load application segment. 

 

 
 

Figure 4.19 
 

We calculate the bending moments in the indicated sections: 
 

1 1 20 3 4 3 1.5 42 .
left
bottomM M kN m         

 

2 2 20 6 4 6 3 48
left
bottomM M kN m        . 

 

3 3 20 6 4 6 3 48leftM M kN m        . 
 

4 4 20 10 4 6 7 10 8 48leftM M kN m           . 
 

5 5 (12 2) 24rightM M kN m        . 
 

6 6 4 6 24
bottom
leftM M kN m     . 
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The diagram of bending moments is plotted in Figure 4.20. 
 

 
 

Figure 4.20  
 

We begin the calculation of transversal and longitudinal forces from 
the support section A: 

 
20 , 10 .A A A AQ H kN N V kN     

 
On a length A-2 of the bar, where a uniformly distributed load is ap-

plied, the transversal forces linearly decrease, and the longitudinal forces 
are constant. Therefore, we calculate: 

 

2 220 4 6 4 , 10 .AQ kN N N kN        
 

On an inclined bar section 3-4, the transversal and longitudinal forces 
are constant. The tangent of the angle  of bar inclination to the horizon 
on this length is equal tg 4 / 8 0.5.    Therefore sin 0.4472,   and 

cos 0.8944.   Next we calculate: 
 

3 4 10 0.8944 (20 4 6) 0.4472 10.73 ,Q Q kN            
 

3 4 10 0.4472 (20 4 6) 0.8944 0.8944 .N N kN          
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In cross-sections of the inclined console, the transversal and longitu-
dinal forces are also constant. It is enough to calculate them in the cross-
section 5 through the right hand external forces: 

 

5 512 0.8944 10.73 , 12 0.4472 5.366 .Q kN N kN         
 

On the right strut, transversal and longitudinal forces are also con-
stant. We calculate: 

 

6 64 , 22 .B BQ Q kN N N kN      
 

Diagrams of transversal and longitudinal forces are plotted in Figu- 
re 4.21 and Figure 4.22.  

 

 
Figure 4.21 Figure 4.22 

 
Check the equilibrium of the left and right frame nodes (Figure 4.23). 

 

 
 

Figure 4.23 
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For the left node we have: 
 

48 48 0.M     
 

4 10.73 0.4472 0.8944 0.8944 4.800 4.798 0.002 .X kN         
 

Relative error        
0.002 100 %

0.0417 % 3 %.
4.800


     

 
10 10.73 0.8944 0.8944 0.4472 9.997 10 0.003 .Y kN           

 

Relative error        
| 0.003 | 100 %

0.03 % 3 %.
10

 
     

 
For the right node we have: 
 

48 24 24 0.M       
 

(10.73 10.73) 0.4472 (0.8944 5.367) 0.8944 4X           
 

9.597 9.600 0.003 .kN     
 

Relative error      
| 0.003 | 100 %

0.0312 % 3 %.
9.600

 
     

 
( 10.73 10.73) 0.8944 (0.8944 5.367) 0.4472 22Y           

 

21.993 22 0.007 .kN       
 

Relative error      
| 0.007 | 100 %

0.0318 % 3 %.
22

 
     
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THEME 5. CALCULATING PLANE STATICALLY  
DETERMINATE TRUSSES 

 
5.1. Trusses: Concept, Classification 

 
Geometrically unchangeable bars systems composed, as a rule, of rec-

tilinear rods connected at their ends by ideal hinges without friction, are 
usually called trusses. 

Therefore the design scheme of a truss is a geometrically unchangea-
ble system of articulated rods (Figures 5.1–5.3, 5.5). 

A real structures with rigid nodes (welded or monolithic), which re-
main geometrically unchangeable after the mental replacement of all rig-
id nodes with hinged ones are often also called trusses (Figure 5.4). 

The rods located along the upper and lower contours of the truss form 
its top and bottom chords. The rods connecting the both chords form a 
lattice of the truss. Inclined rods of the lattice are called diagonals. The 
vertical rods of the lattice are called struts (or pendants if they are tensile). 

 

 
 

Figure 5.1. Trapezoidal truss with triangular lattice and additional struts  
 

The classification of design schemes of trusses as hinge-rod systems can 
be carried out according to many criteria. 

Trusses, like other structures, are divided into plane (Figures 5.1–5.3) 
and spatial (Figure 5.4). 

 

 
 

Figure 5.2. Beam truss with parallel chords and a lattice of N form  
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Trusses can be subdivided according to the supporting conditions into 
trusses free of thrust, or beam trusses (figures 5.1, 5.2, 5.5); and trusses 
with thrust, or arch trusses (figure 5.3). 

According to the outline of the chords, trusses are divided into trusses 
with parallel chords (Figure 5.2 and 5.5, a) and polygonal chords (Figu-
re 5.5, b), triangular, trapezoidal trusses (Figure 5.1), parabolic, circular 
(Figure 5.3), etc. 

According to the type of lattice, trusses are divided into trusses with a 
triangular lattice or of V-form lattice (Figure 5.1; 5.3), trusses with a  
N-form lattice (Figure 5.2), trusses with a crossed lattice (Figure 5.5, a), 
trusses with a mixed lattice (Figure 5.5, b). 

 

 
 

Figure 5.3. Circular two-hinged arch truss with a triangle lattice 
 

 
 

Figure 5.4. Lattice dome 
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a) beam truss with a crossed lattice 
 

 
b) simply supported truss with overhang and mixed lattice 
 

 
Figure 5.5

 
The given classification is far from complete. In real buildings, trusses 

of various types can be used. 
 

5.2. Plane Trusses. Degree of Freedom and Variability 
 

A necessary condition for the geometric immutability and static de-
finability of a truss as a hinge-rod system is that its degree of freedom is 
equal to zero (W = 0) or, if the truss is separated from its supports, its 
degree of variability is also equal to zero (V = 0). 

We assume that the truss in the general case consists of N nodes in-
terconnected by B truss rods (bars) and attached to the supports with L 
supporting rods (simple links). 

Then, for a plane truss, its degree of freedom W with respect to the 
reference system associated with the supporting surface is equal to 

 
2 ,W N B L    

 
where 2N is the degree of freedom of N free nodes as material points, 

B is the number of truss rods (bars) that connects truss nodes as 
simple links and eliminate B degrees of freedom, 

L is the number of simple support rods (links) that also eliminates 
L degrees of freedom of the system. 
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The degree of freedom of a plane hinge-rod system, not having sup-
port connections and separated from the supports, consists of the degree 
of freedom of the system as a rigid whole (disk), equal to three (on the 
plane), and the degree of variability of V of its elements relative to each 
other (internal mutability). Thus, we can write 

 
3 ,W V   

from 
3.V W   

 
Substituting the expression for W under the condition 0L   in the last 

formula, we obtain the final expression for calculating the degree of va-
riability of the truss (hinged-rod system) disconnected from the supports, 

 
2 3.V N B    

 
If the degree of freedom (degree of variability) of the truss is positive 

(greater than zero) 
 

0 ( 0),W V   
 

then the truss is geometrically variable. The truss structure lacks W links 
(rods). 

If the degree of freedom (degree of variability) of the truss is negative 
(less than zero) 

 
0 ( 0),W V   

 
then the truss formally contains an excessive number of links (rods) and 
is, again formally, statically indeterminate. 

If the degree of freedom (degree of variability) of the truss is zero 
 

0 ( 0),W V   
 

then the truss formally has the number of rods (links) necessary for geo-
metric immutability and can, again, formally, be statically determinate. 
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For example, the beam truss (Figure 5.1) has 22 nodes, 10 rods in the 
top and bottom chords, 10 diagonals and 11 struts. The truss is supported 
by three support rods. Its degree of freedom: 

 
2 22 41 3 44 44.W        

 
This means that the truss has the required number of rods and support 

links for geometric immutability and static definability. 
A truss with parallel chords and a cross lattice consists of 18 nodes 

connected by 41 rods and rests, like a simple beam, on three support 
rods. Its degree of freedom: 

 
2 18 41 3 36 44 8.W          

 
Therefore, this truss has 8 redundant links and is statically indeter-

minate. 
 

5.3. Plane Trusses. Formation Methods 
 
As noted in subsection 1.1.5, for a final conclusion on the geometric 

immutability and on the static definability of a truss, as well as any other 
bar system, an analysis of its structure and of the laws by which it is 
compiled are necessary. Trusses of only the correct structure can be really 
geometrically unchangeable (W  0) and statically determinate (W = 0). 

Trusses (systems) that are partially statically indeterminate and par-
tially geometrically changeable, as well as systems that are instantane-
ously changeable are relative to systems of irregular structure. For such 
systems, the concept of the degree of freedom or of variability becomes 
uncertain, meaningless. 

The methods, rules for the formation of trusses of a knowingly cor-
rect structure, remain the same as for any other bar systems. Recall the 
main ones. 

1. The degree of freedom of the truss will not change if you attach 
(disconnect) a node to it using two rods that do not lie on one straight 
line (dyad method). The rods can be knowingly geometrically unchange-
able and statically determinate trusses. 

2. Three rods (three disks) connected by three hinges that do not lo-
cate on one straight line form an internally geometrically unchangeable 
system (single disk) without redundant connections. 
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3. Two trusses (two disks) connected by three rods lying on straight 
lines, not intersecting all three at once at one point and not parallel each 
other, form a single system (disk). In such a system, the total number of 
redundant rods does not change, and the total degree of freedom is re-
duced by three units. 

4. Two trusses (two disks) connected by a common hinge and by a 
rod that does not pass through a common hinge form a whole truss 
(disk), while the total number of redundant rods does not increase, and 
the total degree of freedom decreases by three units. 

By their structure, the trusses (Figures 5.1, 5.2 and 5.5, b) composed of 
rod triangles are disks without redundant connections. These disks are sup-
ported by beam supports (in total, three support rods, not parallel, not inter-
secting at one point). Consequently, all these trusses are geometrically un-
changeable and statically determinate. 

The arched truss (Figure 5.3) is also composed of rod triangles forming a 
circular disk. But this disk rests on two immovable hinged supports (in total 
four support links). Therefore, one of the support links (horizontal) is super-
fluous. This arch is statically indeterminate. 

A truss with a crossed lattice (Figure 5.5, a) differs in its structure 
from a geometrically unchangeable and statically determinate truss with 
an N-form lattice (Figure 5.2) by the presence of eight additional diago-
nals. Therefore, additional diagonals represent redundant rods. This truss 
is geometrically unchangeable, but statically indeterminate eight times. 

 
5.4. Determining Internal Forces in the Truss Rods  

from Stationary Loads 
 
The determination of internal forces in the rods of plane trusses, as in 

other systems (beams, frames, arches), is carried out by the method of 
sections. The essence of the section method for truss is as follows. The 
truss is cut (divided) into two (Figure 5.6, a) or several parts so that the 
rod in which the internal force is to be calculated is cut up. For a truss in 
equilibrium, any part of it must also be in equilibrium. The equilibrium 
equations compiled for the selected part of the truss, along with external 
nodal loads, include forces in the rods that are cut up. The internal forces 
(longitudinal forces) in the rods that are cut up are usually directed from 
the node to the cut that corresponds to the tension of the rods (Figure 5.6, b). 
The equilibrium equations must be compiled in such a form and sequ-
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ence that each of them includes only one unknown force, if it possible. 
The algebraic signs of the found forces are retained. This allows us to 
determine the type of stress state of the rod by the sign of effort: tension 
or compression. The plus sign corresponds to extension in the rod, and 
the minus sign corresponds to compression in the rod. 

 

 
 

Figure 5.6 
 

Consider the process of applying the section method using the exam-
ple of a trapezoidal truss with a triangular lattice and additional struts 
adjacent to the upper chord. The length of the span of the truss is 24 m. 
The height of the truss above the supports is 2 m. The height of the truss 
in the middle of the span is 5 m. The truss is loaded with six vertical 
nodal forces of 24 kN each (Figure 5.7). 

 

 
 

Figure 5.7 
 
First we find reactions. We find the reaction of the left support from 

the sum of the moments of all forces relative to the right support point: 
 

24 (22 20 18 16 14 12)
102 .

24AV kN
     

   
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Accordingly, the reaction of the right support will be found from the 
sum of the moments of all forces relative to the left support point: 

 

24 (2 4 6 8 10 12)
42 .

24BV kN
     

   

 

Perform a check in the form of the sum of the projections of the ac-
tive and reactive forces on the vertical axis: 

 

102 42 6 24 144 144 0.Y         
 

The forces in the truss rods can be determined in any order. For ex-
ample, we make a vertical section through the fifth panel of the upper 
chord and the third panel of the lower chord, as shown in Figure 5.7. We 
are considering the equilibrium of the left part.  

We find the force 1N  in the cut rod of the third panel of the lower 
chord from the sum of the moments of all the left forces relative to the 
moment point where the cut diagonal and the cut rod of the upper chord 
intersect. The height of the truss at this point at a distance of 10 m from 
the left support is 4.5 m. This will be the arm of the force 1N  in the cut 
rod of the lower chord. Solving the equilibrium equation with respect  
to 1,N  we find 

 

1
102 10 24 8 24 6 24 4 24 2

120 .
4.5

N kN
        

    

 

We find the force 2N  in the cut rod of the upper chord from the sum 
of the moments of left forces relative to the node (moment point) where 
the cut diagonal and the cut rod of the lower chord intersect. This node is 
located at a distance of 8 m from the left support. The height of the truss 
in this node is 4 m. The arm of the force 2N  in the upper chord relative 
to this moment point located on the lower chord is equal to the projection 
of the height of the truss at this point on the normal to the upper chord. 
We calculate the tangent of the angle   of inclination of the upper chord 
to the horizon, and through it the sine and cosine of this angle: 

 

5 2
tg 0.25, sin 0.2425, cos 0.9701.

12


        
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We calculate the arm 2  of the force 2N  relative to the moment point 
 

2 4 0.9701 3.880.     
 

So, from the sum of the moments of the left forces relative to the 
moment point, we find the force in the cut rod of the upper chord  

 

2
102 8 24 6 24 4 24 2

136.08 .
3.880

N kN
      

     

 
A negative value of the found force means that the rod of the upper 

truss chord is compressed. 
To find the force 3N  in the cut diagonal, we calculate the sine of the 

angle   of inclination of this rod to the horizon, and then the cosine of 
the angle :  

 

2 2

4.5
sin 0.9138, cos 0.4062.

4.5 2
    


 

 
We project on the vertical axis all the forces acting on the left part: 

 

3102 4 24 ( 136.08 0.2425) 0.9138 0.Y N          
 

From where we find 
 

3
102 96 33.00

29.55 .
0.9138

N kN
 

    

 
We will check the calculations by projecting all the forces acting on 

the left part on the horizontal axis: 
 

1 2 3cos cos

120 136.08 0.9701 29.55 0.4062

120 132.01 12.00 0.01.

X N N N    
     
    


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Verification showed that the calculations were performed almost  
exactly. The error is only a unit of the fifth significant digit of one of  
the terms. 

In a similar way, internal forces can be found in the remaining rods  
of the truss. We invite the reader to perform the necessary actions on 
their own. 

In some cases, cuts (sections) may be carried out so that only one node 
is cut out from the truss. For example, such is the third left node of the 
upper truss chord (Figure 5.7). The cut out node is shown in Figure 5.8. 
The performed cut demonstrates a special case of the section method, 
called the cut-out nodes method. All the forces acting on the one cut-out 
node converge at one point, in the cut-out node itself. For such a system 
of forces passing through one point, only two independent equilibrium 
equations can be compiled. Therefore, the nodes should be cut out in 
such an order that in each cut out node there were no more than two un-
known forces. 

 

 
 

Figure 5.8 
 
For the cut node under consideration from the sum of the projections 

onto the horizontal axis (Figure 5.8) 
 

4 5cos cos 0X N N        
 

only equality of forces in the rods of adjacent panels of the upper chord 
follows 
 

4 5.N N  
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The values of these forces remain unknown. They will have to be 
found from other equilibrium equations, for example, as shown above. 

But from the sum of the projections onto the vertical axis 
 

6 0Y F N       
 

we easily find 
 

6 24 .N f kN     
 

Consequently, the second on the left-hand vertical rod of the truss is 
compressed with a force of 24 kN. 

The cut-out nodes method often allows you to visually, without calcu-
lation, set the rods with zero forces, rods with the same forces, rods with 
known forces in advance. Consider these most common special cases of 
equilibrium of nodes: 

1. Double-rod unloaded node (Figure 5.9, a). The forces in both rods 
are zero. 

2. Double-rod node with a load along one of the rods (Figure 5.9, b). 
The force in the rod lying on one straight line with an external force is 
equal to this force. The force in the other single rod is zero. 

3. Three-rod unloaded node (Figure 5.9, c). The forces in the rods lying 
on one straight line are equal. The force in the third single rod is zero. 

4. A three-rod node with a load along a single rod (Figure 5.9, d). The 
forces in the rods lying on one straight line are equal. The force in the 
third single rod is equal to the external force. 

5. A four-rod unloaded node with rods lying in pairs on straight lines 
(Figure 5.9, e). The forces in pairs lying on the same straight line are  
the same. 

6. A four-rod unloaded node with two rods lying on one straight line 
and with two others, equally inclined to the first two (Figure 5.9, f). The 
forces in the equally inclined rods are equal in value and opposite in sign. 

So, based on the considered particular cases of equilibrium of nodes, 
it can be immediately established in the considered truss (Figure 5.7) that 
the vertical rods above the supports and the extreme rods of the upper 
chord do not loaded (case 1). Two struts of the right-hand half-span of 
the truss are also not loaded (case 3). The second and third struts of the 
left-hand half-span are compressed with a force of 24 kN (case 4). The 
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forces in the rods of the upper chord adjacent to the intermediate struts 
are equal in pairs (case 4 and 3). 

 

 
 

Figure 5.9. Special cases of equilibrium of nodes 
 

We invite the reader to determine unloaded rods in the truss depicted 
in Figure 5.6, a. 

Efforts in some truss rods cannot calculate always immediately, from 
one equation. Sometimes you have to perform several cuts and draw up 
the appropriate number of equations. An example of such a bar is the 
central vertical rod of a trapezoidal truss (Figure 5.7). 

To find the force in this rod, you must first find the force in one of the 
adjacent rods of the upper chord (the first cross section and the first 
equation) using the moment point method. We suggest doing it yourself. 
Then cut out (the second cut) the central node of the upper chord (Figu-
re 5.10) and draw up two more equations. 
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Figure 5.10 
 

The second equation: 
 

cos cos 0.L RX N N       
 

Where should 
 

.L RN N N   
 

The value of N with its sign is already found from the first equation. 
The third equation: 
 

2 sin 0.VY N F N       
 

Where should 
 

2 sin .VN N F    
 
Thus, the force in the central vertical bar is expressed through the ex-

tern nodal force and forces in the adjacent rods of the upper chord by the 
method of two sections. 

 
5.5. Constructing Influence Lines for Internal Forces  

in the Truss Rods 
 
The influence lines for internal forces in the rods of the beam trusses 

(Figure 5.11, a) are constructed, as a rule, by the method of sections. 



136 

 
 

Figure 5.11 
 

First, we construct the influence lines for support reactions. As in a 
simple beam, to determine the support reactions of the beam truss, we 
compose the equilibrium equations: 



137 

0BM  ;     1 5 0B Ax R d   ;     .
5

B
A

x
R

d
  

 

0AM  ;     5 1 0B AR d x   ;     .
5

A
B

x
R

d
  

 
The resulting expressions for AR  and BR  are functions of independ-

ent variables, respectively Bx  and .Ax  Their graphs are shown in Fig-
ures 5.11, b and 5.11, c. 

Thus, the influence lines for support reactions in a beam truss are 
constructed in exactly the same way as in the corresponding simple 
beam. Moreover, the influence lines for the support reactions do not de-
pend on which chord the load moves: lower or upper. The efforts in the 
rods of the truss, as will be shown below, depend on which chord of the 
truss is loaded: top or bottom. 

Assuming for definiteness the movement of a unit force along the 
lower chord, we will construct an influence line for the internal force 1N   
of the diagonal of the fourth panel (the order of consideration of the rods 
and the construction of force influence lines for them may be arbitrary). 

To determine the force 1,N  we make section I–I and use the sum of 
the projections of the forces on the vertical axis as the equilibrium equa-
tion of one of parts of the truss. This will eliminate unknown forces in 
the cut up horizontal rods of the lower and upper chords from the equi-
librium equation. The equation of the projections on the vertical axis will 
include only vertical and inclined forces: unit force, support reactions, 
and the force in the diagonal bar. In the considering case, the mobile 
force may be on the left part of the truss, or on the right part. Let's con-
sider the possible options. 

 

1 cos 0;right
BY N R      

 

1 ;
cos

BR
N 


       1. . . . cos .BI L N I L R   

 
That is, the influence line for the effort 1N  in section A–10 will have 

the same form as the influence line for the support reaction ,BR  all of 
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whose ordinates are divided by cos  (the angle  is determined from the 
geometry of the system). 

When a unit force moves only to the right of the dissected panel (in the 
section 11–12), we consider the equilibrium of the left part of the truss: 

 

1 cos 0;left
АY N R      

 

1 ;
cos

AR
N 


       1. . . . cos .АI L N I L R    

 
We received that the influence line for the effort 1N  in section 11–12 

will have the form of a support reaction ,AR  all of whose ordinates must 

be divided by cos .  
When a unit force moves in a section of a dissected panel (in a sec-

tion of 10–11), the forces in the truss rods in accordance with the princi-
ple of nodal transfer of load will change according to a linear law. There-
fore, to construct it on this section of the influence line under considera-
tion, it is enough to connect the ordinates of the influence line to the left 
and right of the dissected panel with a straight line. This straight line 
segment is called the transition line. 

The final form of the influence line for the force 1N  is presented in 
Figure 5.11, d. 

To determine the force 2N  in the rod 10–11 of the lower chord, we 
can use the same section I–I (Figure 5.11, a) and the method of the mo-
ment point. We select the moment point in node 5, where the cut rods  
4–5 and 10–5 intersect. 

Assuming that the unit force is located to the left of the dissected 
panel 10–11, we consider the equilibrium of the right part of the truss: 

 

5 0;rightM        2 0;BN h R d   
 

2 ;B
d

N R
h

        2. . . . .B
d

I L N I L R
h

  

 
When the unit force is located to the right of the dissected panel 10–11, 

we consider the equilibrium of the left part of the truss: 
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5 0;leftM        2 4 0;AN h R d    
 

2
4

;A
d

N R
h

         2
4

. . . . .A
d

I L N I L R
h

  

 

In the segment of the dissected panel 10–11, we draw a transition line. 
The influence line for the force 2N  is shown in Figure 5.11, e. 
An analysis of this influence line shows that its left and right lines in-

tersect under the moment point. This pattern will be satisfied when using 
the method of the moment point in other cases. 

To determine the force in the rod 3–9, we will make section II–II 
(Figure 5.11, a) and also will use the method of the moment point, for 
which we take the point K of the intersection of the axes of the rods 2–3 
and 9–10. The panels of the lower and upper chords dissected by section 
II–II are located on different verticals. In such cases, the position of the 
movable force should be determined relative to the dissected panels of 
the loaded chord, i.e., the chord along which the unit force moves. In this 
case, when the force moves along bottom chord, the dissected panel of 
the loaded (lower) chord is between nodes 9 and 10. If the unit force 
moves along top chord, then the upper chord will be loaded, and the dis-
sected panel will be between nodes 2 and 3. 

Consider the movement of a unit force along bottom chord. 
If a unit force moves to the left of the dissected panel (in the segment 

A – 9), then, as before, we consider the equilibrium of the right part of 
the truss: 

 

0;right
кM        33 6 0;BN d R d   

 

3
6

2 ;
3B B
d

N R R
d

          3. . . . 2.BI L N I L R   

 

When a unit force moves to the right of the dissected panel of the 
loaded chord (in the area between nodes 10 and 12), we consider the 
equilibrium of the left part of the truss: 

 

0;left
кM        33 0;AN d R d    

 

3 0.333 ;AN R           3. . . . 0.333 .AI L N I L R    
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On the length of the dissected panel of the loaded chords (9–10), we 
draw a transition line. The influence line for the force 3N  is shown in Figu-
re 5.11, f. Its left and right branches intersect under the moment point K. 

When constructing the influence line for the force 4N  in the rod 2–8, the 

force 4N  is determined by cutting out the node 8 (Figure 5.11, a). Node 8 is 
located on the lower chord of the truss, along which a unit force moves. 
There are three options for the location of the unit force in relation to  
the node 8. 

1. The unit force is located directly in the cut out node 8. There is a spe-
cial case (Figure 5.12). The considered rod is stretched by a single force, and 
the force in it 4 1.N   We postpone the unit with the plus sign on the influ-
ence line under the node. 

2. When the unit force is located outside the cut out node, to the left or 
right of the cut panels of the lower chord, or in any of the nodes of the upper 
chord, we also have a special case of equilibrium of the node 8 (Figu- 
re 5.13), and the internal force 4 0.N   The ordinates of the influence line 
are zeros in the corresponding segments. 

3. When a unit force moves within the dissected panels of the lower, 
loaded chord, a nodal load transfer takes place, and in the corresponding 
segments of the influence line (A – 8 and 8–9), it is necessary to draw transi-
tional lines 
 

 
Figure 5.12

 
Figure 5.13

 
The final influence line for the force 4N  has the form shown in Fi-

gure 5.11, g. 
The effort 5N  in the rod 4–10 is easiest to determine by cutting out 

the node 4. Again we have a special case of the equilibrium of the node 4. 

1F 

y

4N

y

4N
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For any position of the unit force on the loaded lower chord of the truss 
the effort 5 0N  . Accordingly, the influence line for this effort along the 
entire length of the truss will be zero (Figure 5.11, h), but only if a unit 
force moves along the lower chord.  

We offer the reader to independently build an influence line for the 
effort 5N  during the movement of a unit force along the upper chord by 
himself. 

Consider the process of constructing the influence line for the effort 
in the support column 6 – B. The internal force 6N  in this rod may be 
easy determined by cutting out the support node B. The equilibrium of 
the node B is also a special case. The internal force 6N  in the support 

strut balances the support reaction ,BR  only if there is no any other force 
in this node. 

When the unit force is in the cut out support node B (Figure 5.14), it 
follows from the sum of the projections of the forces on the vertical axis 

 

6 1 0BY N R       
that 

6 1 .BN R   
 

Thus, the internal force in the support column is equal to minus the 
support reaction if there is no movable force in the support node. If the 
movable force is in the support node, then the internal force in the sup-
port column is zero. The load is transferred into the support and the 
whole truss doesn’t work. 

 

 
 

Figure 5.14 

1F 

y

6N

BR
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The influence line for the effort 6N  repeats the influence line for the 
support reaction RB with the minus sign, when the unit force is in all nodes 
of the truss, except the support node B. When the unit force is in node B, 
the ordinate of the influence line for the force is equal to zero. Transitional 
straight lines are in sections of two cut panels of the lower chord. 

The final influence line for the effort 6N  is presented in Figure 5.11, i. 
 

5.6. Constructing Influence Lines for Efforts in the Rods 
of Compound Trusses with Subdivided Panels 

 

Trusses with subdivided panels are formed by superimposing addi-
tional secondary trusses on the main truss with a simple lattice. The sec-
ondary trusses are located within the panels of the main truss. 

The secondary trusses are used to perceive the local load applied be-
tween the nodes of the main truss, and transfer it to the nodes of the main 
truss. Examples of such trusses are shown in Figures 5.15, a and 5.16, a. 
The decomposition of these compound trusses into the main trusses and 
secondary ones is shown for these examples in Figures 5.15, b, c and 
5.16, b, respectively. 

The compound trusses with subdivided panels can be single-tier and 
double-tier. Single-tier trusses transfer the load to adjacent nodes of the 
same load chord. For example, for the truss in Figure 5.15, the secondary 
truss 3-5-6-7 transfers concentrated force from node 5 equally to nodes 3 
and 7 of the main truss (Figures 1, b, c).  

Double-tier compound trusses, perceiving the load in additional nodes 
of one chord, transfer it to the main nodes of another chord of the truss. 
For example, the secondary truss 13-15-17-16-14-18 (Figure 5.16, b) 
transfers the concentrated force acting in the node 15 of the lower chord 
to the nodes 14 and 18 of the upper chord.  

Three types of rods are distinguished in compound trusses: rods only 
of the main truss (first type), rods of only secondary trusses (second 
type) and rods obtained by superimposing secondary trusses rods on the 
rods of the main truss (third type). 

Calculation of compound trusses is carried out, as a rule, by the 
method of sections. Sometimes it is more convenient to determine the 
forces in the rods of compound trusses taking into account the belonging 
of the rods to one of the types listed above. In this case, the calculation 
sequence is reduced to the following actions. 
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1. The forces SN  in the secondary truss rods caused by local loads 
acting on them are determined. The resulting efforts in the rods of the 
second type are final. 

2. The load acting on the secondary trusses is transmitted to the nodes 

of the main truss. The forces MN  in the rods of the main truss are de-
termined. The efforts obtained in the rods of the first type are final. 

3. The forces N  in the rods of the third type are calculated by the ex-
pression: .SMN N N    

We give examples of constructing influence lines for forces in the 
rods of compound trusses with subdivided panels. 

 

E x a m p l e 1. Consider a beam-type single-tier compound truss 
(Figure 5.15, a). Let the lower chord of the truss be the loaded chord. To 
construct the influence lines for the efforts in the rods, one should be 
guided by the rules for determining the internal forces in compound 
trusses described above. 

a) Let us construct the influence line for the force N1 in the rod 13-14 

(Figure 5.15, a). This rod refers to the rods of the second type, i.e. 1 1 .SN N  
To determine the force in it, we use the method of sections in its particu-
lar form – the method of cutting out nodes. We cut out the node 13 and 
consider its equilibrium at various positions of the unit force. When a 
unit force moves outside the considered node (from node 1 to node 11 

and from node 15 to node 21), force 1
sN  = 0 (a special case of the equi-

librium of the node). If the unit force is in the considered node, then the 

force 1
SN  = 1 (a special case of the equilibrium of the node). The influ-

ence line for N1 is shown in Figure 5.15, d. The indicated influence line 
is within the truss panel where the secondary truss 11-13-14-15 is loca-
ted. It means that this secondary truss works only by local loading. 

b) The rod 3-5 refers to rods of the third type, i.e. its effort can be 
found by the expression: 

 

2 2 2 .S MN N N   
 

Therefore, the influence line can be obtained by summing the two in-
fluence lines: 

   2 2 2 .S Minf.line N inf.line N inf.line N   
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Figure 5.15 
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The influence line for 
2

SN  is construct for the secondary truss 3-5-6-7, 

therefore, does not go beyond the panel on which the secondary truss is 
“hung”. The rod only works if the moving force locates in the node 5 

(Figure 5.15, c). To determine the effort 
2

SN  we cut out the node 3 of the 

secondary truss and write the equilibrium equations: 
 

3 6 3 5

3 6

3 6 3 5 3 5

3 6 3 6

cos 0,0,

0. 0,5 sin 0.

0.85 0, 0.8;

0.5 0.53 0. 0.94.

N NX

Y N

N N N

N N

 



  

 

    
       
    

       




 

 

The influence line for 
2

SN  is shown in Figure 5.15, e. 

The influence line for 
2

MN  is constructed for the rod 3-7 of the main  

truss. We draw section I–I (Figure 5.15, b). Having compiled the equi-
librium equations of all right or left forces, when the moving force is 
located to the left or to the right of the dissected panel of the load chord,  

we obtain the dependences for constructing the influence line 
2

MN  (Fi-

gure 5.15, f): 
 

 

2 24

2

2 2 24

8
0, 8 1.25 0

1.25
8

inf . inf . .
1.25

0, 0 1.25 0 0 inf . 0.

right o o
B B

o
B

left o o o
A

M V N N V

lineN lineV

M V N N lineN

          

 

         





 

 
The influence line 2N  obtained by summing is shown in Figure 5.15, g. 

c) Rod 7-8 refers to rods of the first type, i.e. an effort 
33 .MN N  To 

construct the influence line 
3

MN  we do the section II–II (Figure 1, b). 

We obtain expressions for the “left-hand branch" of the influence line 

3

MN  (Figure 5.15, h): 
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 

3 2

2

10
0, 10 4 0

4
10

inf . inf . .
4

right o o
B BK

o
B

M V N N V

lineN lineV

          

 


 

 

The “right-hand branch” of the influence line 
3

MN  can be constructed 

without writing an analytical expression. The “left / right-hand branches” 
of the influence line for efforts in the rods of trusses of beam type have 
the properties: to pass through the left / right-hand supports; intersect 
under the moment point (moment point method) or be parallel in the case 

of the projection method. "Right-hand branch" of the influence line 
3

MN  

therefore, passes through the support B and crosses the "left-hand 
branch" under the point K (Figure 5.15, h). The transition line will con-
nect the left-hand and right-hand branches within the dissected panel of 
the lower (load) chord. 

 
E x a m p l e 2. Consider a beam-type compound truss with two-tier 

secondary trusses (Figure 5.16, a). Let the lower chord be the load chord. 
a) Let us construct the influence line for the force N1 in the rod 16-18 

(Figure 5.16, a). This rod refers to the secondary truss rods 13-15-17-16-

14-18, i.e. 1 1 .sN N  The secondary truss under load is shown in Figu- 
re 5.16, b. From the equilibrium of the node 18 of the secondary truss 
(Figure 5.16, b): 

 

10 0.5 sin 45 0,sY N       
 

find the effort 1 0.707.sN   
If the unit force moves outside the fourth panel, then the considered 

secondary truss will not work, and therefore the effort 1 0sN   (a special 
case of the equilibrium of the node). The influence line for N1  is shown 
in Figure 5.16, c.  

b) The rod 14-18 of the same panel refers to the rods of the third type, 
i.e. the influence line for 2N  is constructed by the expression: 

 

   2 2 2 .S Minf.line N inf.line N inf.line N   
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To determine the effort 
2

sN  we consider the equilibrium of the sec-

ondary truss node 18 (Figure 5.16, b): 
 

2 10 cos45 0,s sX N N        
 

find the effort 2 0.5.SN    

The influence line for 
2

sN   is shown in Figure 5.16, d. 

The influence line 
2

MN  is constructed for the rod 14-18 of the main 

truss. Hold the section I–I (Figure 5.16, b). The dependence for con-

structing the "left-hand branch "of the influence line 
2

MN  (Figure 5.16, e) 

is obtained by writing the equation of moments of all right forces relative 
to the moment point – node 17: 

 

 
2 217

2

0, 4 2 0 2

inf . inf . 2.

right M M
B B

M
B

M V N N V

lineN lineV

           

  


 

 

Right-hand branch" of the influence line 
2

MN  (Figure 5.16, e) passes 

through support B and crosses the "left-hand branch" under node 17 
(Figure 15.16, h). The transition line will connect the left-hand and right-
hand branches within the fourth (dissected) panel. The influence line 2N  
obtained by summing is shown in Figure 5.16, f. 

c) It may seem that the rod 13-14 refers to the rods of the first type, 

i.e. an effort 
33 .MN N  In this case the influence line 

3

MN  is shown in 

Figure 5.16, g by the dashed line: the upper dashed line is constructed 
under the condition that the unit force moves along the lower chord; the 
lower dashed line is constructed under the condition that a unit force 
moves along the upper chord (in this case, rod 13-14 does not work, be-
cause the concentrated force does not fall into node 13). 

However, in fact this rod is the support rod (suspension) of two adja-
cent two-tier secondary trusses located throughout 4 panels between 
nodes 9 and 17. Consider the location of the force at nodes 11, 13, 15. 
When the unit force is in the node 13 the internal force 3N in the rod 13-14 
is equal to 1.  
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Figure 5.16 
 
Therefore, under the node 13 the ordinate of the upper dashed line 

will be valid. If the force is located in nodes 11 and 15, the correspond-
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ing secondary trusses are included in the work and redistribute force 
pressure on the upper chord. The node 13 is not loaded and the internal 
force 3N  is zero. Consequently, the corresponding ordinates of the lower 
dashed line will be valid. 

We show the final form of the influence line for the force 3N  by the 
shaded part of the Figure 5.16, g. 

d) Using similar actions, we will build the influence line for 4N  in 
the rod 14-16. 

Section II–II (Figure 5.16, a) passes through the considered rod 14-16, 
but does not intersect more than three rods with unknown forces. There-
fore, it is possible to determine the forces and construct influence lines 
for the rod 14-16 guided by the rules for determining the internal forces 
in the truss rods with a triangular or diagonal lattice. 

 

 

 

4 4

2

4 4

2

1
0, sin 45 0

0.707

inf . inf . 1.414.

1
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right M M
B B

M
B

left M M
A A

o
A

Y V N N V

lineN lineV

Y V N N V

lineN lineV

         

  

        

 








 

 
In Figure 5.16, h, the left-hand and the right-hand branches of influ-

ence line for 4N  are shown in dashed lines. When the load moves to the 
left-hand of the dissected panel (to the left-hand of node 13), the expres-
sion for the "left-hand branch" is valid; when the load moves to the right-
hand of the dissected panel (to the right-hand of node 15), the expression 
for the "right-hand branch" is valid. The transfer line is located within 
the dissected panel (rod 13-15 of the lower (loaded) chord). The final form 
of the influence line for 4N  is shown in Figure 5.16, h (the shaded part). 
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THEME 6. CALCULATING THREE-HINGED ARCHED TRUSSES, 
COMBINED AND SUSPENSION SYSTEMS 

 

6.1. Calculation of Arched Trusses 
 

In three-hinged arched trusses, unlike three-hinged arches and frames, 
the system disks consist of hinged-rod systems, i.e. trusses. 

In arched trusses not only vertical, but also horizontal components of 
the support reactions occur under the action of only vertical loads. The 
horizontal components are called thrust. Examples of arched trusses, 
trusses with thrust, are shown below (Figures 6.1 and 6.2, a). 

 

 
 

Figure 6.1 
 

The trusses shown in the drawings (Figures 6.1, a and 6.2, a) are 
called arched trusses, since the method of their formation is similar to the 
method of forming three-hinged arches. The beam truss (Figure 6.1, b) 
with an inclined support rod is also a thrusting system, a truss that has 
thrust under vertical loads. 

The support reactions of arched trusses are defined in the same way 
as in three-hinged arches and frames. After determining the support reac-
tions, the internal forces in the rods of the arched trusses from the action 
of any load are determined by the same methods as in beam trusses. 

Consider the features of constructing influence lines for efforts in the 
rods of arched trusses. Let's build, for example, an influence line for the 
internal force 1N  in the rod of the upper chord of the truss (Figure 6.2, a). 
Before this, it is necessary to construct influence lines for the reactions 
of the truss. 

The vertical component of the reaction of the immovable hinged sup-
port A is determined from the equation of moments of all the forces act-
ing on the truss, relative to point B: 

 

0;BM        1( ) 0;A FR l l x         1 .F
A

x
R

l
   
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Figure 6.2 
 
The obtained dependence coincides with the corresponding depend-

ence of a simple beam of a span of l. Therefore, the influence line of the 
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support reaction RA is constructed as in a simple beam (Figure 6.2, b). 
Similarly, we obtain the dependence for the vertical component of the 

reaction of the support B: 
 

.F
B

x
R

l
  

 

The influence line for the reaction BR  is shown in Figure 6.2, c. 
The horizontal component of the support reactions, i.e. thrust, may be 

defined, as in a three-hinged arch, according to the formula: 
 

0

.CM
H

f
  

  

Therefore, the influence line for the thrust is the influence line for the 
beam bending moment in the beam cross section located under the in-
termediate hinge of the arch truss, taken with a coefficient 1 / f  (Figu- 
re 6.2, d). 

The internal force 1N  may be calculated using section I–I and mo-
ment point 1 (Figure 6.2, a). 

If the unit force is located to the left of the section, then, considering 
the equilibrium of the right part of the truss, we get: 

 

1 0;rightM        18 4 0;BR d H a N a     
 

1
8

4 .B
d

N H R
a

   

 

It means that 
 

1
8

. ( . ) 4 ( . ) .B
d

Inf Line N Inf Line H Inf Line R
a

     

 

When the unit force moves to the right of the dissected panel, from 
the equation of equilibrium of the left forces we find: 

 

1 0;leftM        12 4 0;AR d H a N a         1
2

4 .A
d

N H R
a

   
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It means that  
 

1
2

. ( . ) 4 ( . ) .A
d

Inf Line N Inf Line H Inf Line R
a

     

 

In the length of the dissected panel, we draw a transition line. The  
influence line for the internal force 1N  is shown in Figure 6.2, d. 

 
6.2. Calculation of Combined Systems 

 
Structural systems, some of the elements of which work on bending, 

shear and tension-compression, and the other part only on tension-
compression, are called combined systems. Such systems, for example, 
include: a beam with a hinged arch (Figure 6.3, a), three-hinged systems 
(arches¸ frames) with ties of various kinds (Figures 6.3, b, c, d), a beam 
with a hinged chain (Figure 6.4, a), a suspension hinged chain with a 
stiffening beam (Figure 6.5) and many others. 

 

 
 

Figure 6.3 
 

Features of the combined systems calculation will be discussed below 
on the examples of the calculation of a beam with a hinged chain (Figu-
re 6.4, a) and a suspension system. (Figure 6.5, a) 

 
6.3. Calculation of a beam with a hinged chain 

 
A geometrically unchangeable and statically determinate beam with a 

hinged chain (Figure 6.4, a) is a structure, where the horizontal bars AC 
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and CB connected by an intermediate hinge are strengthened by a polyg-
onal hinged chain with vertical struts.  

 

 
 

Figure 6.4 
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The horizontal reaction of support A is zero under any vertical load. 
Vertical support reactions caused by a given load, we find from the 

equilibrium equations of the entire system: 
 

0; 5 2 0; 0.4 ;A B BM R d q d d R qd       
 

0; 5 2 4 0; 1.6 .B A AM R d q d d R qd      
 
We begin the calculation of internal forces by determining the force 

H  in the rod 4-6 of the hinged chain. To do this, we draw section I–I 
through the named rod and hinge C. Considering the equilibrium of the 
right part, we obtain 

 
22.5

0; 2.5 0; .right
B BC

d qd
M R d Hh H R

h h
       

 
Then the internal forces in the rods of the chain and in the struts can 

be determined as in the rods of any truss (Figure 6.4, b). 
After determining the forces in the elements of the chain and in the 

struts, the horizontal bars are calculated on the action of a given load and 
the forces transmitted by the members of the strengthening system (Fi-
gure 6.4, d), like a simple beam. We recommend that the reader perform 
the corresponding calculations on their own. 

Diagrams of internal forces are shown in Figure 6.4, e, f, g. 
 

6.4. Calculation of a suspension system 
 

The features of the influence lines construction for internal forces in 
the elements of combined systems can be considered using an example 
of a suspension system such as a hinged chain with a stiffening beam 
(Figure 6.5, a). 

The procedure for determining the forces in the elements of this sys-
tem is as follows. 

To find the support reactions from the action of the load applied to 
the stiffening beam, the hinged chain must be cut at the points A  and 
B  located vertically above the supports A  and B  (Figure 6.5, a). The 
longitudinal forces in the cut rods can be decomposed into horizontal and 
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vertical components AV  , AH   and BV  , BH  , Having compiled the equi-
librium equations of the lower part of the system in the form of sums of 
moments relative to points A  and B , the sums of the vertical compo-
nents A A AR V V    and B B BR V V    may be found: 

 

0; 1 0; ;A B B
x

M x R l R
l

                            (6.1) 
 

0; 1( ) 0; .B A A
l x

M l x R l R
l




                     (6.2) 

 

From the equations of equilibrium of the hinged chain nodes at the 
junctions of the vertical suspensions (Figure 6.6, b, c, d) or of a fragment 
(Figure 6.6, a) it follows that the horizontal component of the longitu-
dinal forces in the chain elements is constant and equal to the thrust of 
system H. 

To find the thrust H, we draw section II–II, passing through the hinge 
C and the horizontal chain rod (Figure 6.5, a). Having compiled the sum 
of the moments of forces relative to the hinge C for one of the parts of 
the system, for example, for the left, we get: 

 

0; 1 ( ) 0.
2 2

left
AC

l l
M R x Hh H h f        

 
  

 

Or, considering that  
 

01 ,
2 2A C
l l

R x M    
 

                               (6.3) 

 

get the formula for determining the horizontal component H 
 

0

.CM
H

f
                                           (6.4) 

 

From the conditions for the expansion of the longitudinal force in the 
chain element at the point A  (Figure 6.6, a), we find the vertical com-
ponent :AV   

 

3tg .AV H    
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Figure 6.5 
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Figure 6.6 
 
Similarly, the component BV   is determined. 

After that we find the support reactions AV  and :BV  
 

; .A A A B B BV R V V R V                            (6.5) 
 
With the known horizontal component H, the total forces in the chain 

elements will be equal 
 

.
cosi

i

H
N 


 

 
Suspension forces are determined from the equilibrium equations of 

the nodes (Figures 6.6, b, c, d). 
To determine the internal forces in the section K of the beam, we 

draw a strictly vertical section through K and consider the equilibrium of 
the left part (Figure 6.7). 

We decompose the longitudinal force in the cut chain element into the 
horizontal and vertical components H and V1. The bending moment and 
the transverse force in the cross section K will be equal to: 

 
( ) ( ) ( ) ( )K A A K K KM V V x F x x H h f H h f y           

01( ) ,A K K K K KR x x x Hy M Hy                       (6.6) 
 

0
1 1 1( ) tg 1 tg tg ,K A A A KQ V V F H R H Q H              (6.7) 
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where 0
KM  and 0

KQ  are the bending moment and the transverse force in 
the corresponding section of a simple two-support beam having the same 
span and the same load as the system under consideration. 

 

 
 

Figure 6.7 
 
Based on the obtained dependencies for determining the support reac-

tions and efforts, it is possible to construct the necessary lines of influ-
ence. 

So, using formulas (6.1) and (6.2), we build the influence lines 

A A AR V V    (Figure 6.5, b) and B B BR V V    (Figure 6.5, c). As for a 

simple beam, the influence line for the beam bending moment 0
CM  is 

constructed (Figure 6.5, d). According to the formula (6.4), the influence 
line for the component H is built (Figure 6.5, e), and on the basis of (6.5) 
the influence line for the reaction AV  (Figure 6.5, e) is constructed. 

According to formulas (6.6) and (6.7), the influence lines of the ben-
ding moment KM  (Figure 6.5, g) and the transverse force KQ  (Figu- 
re 6.5, h) are plotted. 
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THEME 7. BASIC THEOREMS OF STRUCTURAL MECHANICS 
AND DETERMINATION OF DISPLACEMENTS 

 
7.1. Bars Systems Displacements. General Information 

 
When the load is applied to a structure (we will denote this factor  

by ),F  when the temperature changes ( t ) or the supports are displaced  
( ),c  linear deflections of its points and the angles of rotation of its cross-
sections appear. 

In Figure 7.1 the solid line shows the initial state (before the external 
load applied) of the frame elements, the dashed line shows the state after 
loading (deformed state). The cross-section K  has moved to the position

1.K  The angle   describes the rotation of the cross-section, the section 

1KK  (not shown in the diagram) describes the linear displacements of 

the cross-section .K  
 

2

1
33

2
1

= F3

 F2

1F

1K

K

 
 

Figure 7.1 
 

The linear displacement of the cross-section K  in a direction that 
does not coincide with the true one can be determined by finding the pro-
jection of the segment 1KK  on this direction. In engineering calcula-
tions, the displacements of the cross-section in the vertical and horizontal 
directions are often determined. 

The displacements are determined by checking the rigidity of struc-
tures, by calculating them for stability and vibrations, and also by calcu-
lating statically indeterminate systems. 
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The displacement of any cross-section is usually denoted with a sym-
bol   (delta) with two indices, the first of which indicates the direction 
of displacement, and the second one indicates the reason that caused the 
displacement. So, for example, 1F  is denoted the displacement of the 
cross-section in the 1st direction, caused by an external load. The sense 
of the notation 2F  and 3F  is revealed with the help of Figure 7.1. 
Then, it will be necessary to determine the displacements in the direction 
of several concentrated forces 1 2, , , nF F F  action. Then iF  should 
be read as follows: this is the displacement of the application point of the 
force iF  in its direction caused by the load .F  

The displacement in the i-th direction caused by the temperature  
effect is denoted as ,it  the displacement in the i-th direction caused by 

the displacement of the supports is denoted as .ic  

Determination of displacements in linearly deformable systems is 
based on general theorems on elastic systems. 

 
7.2. Work of External Statically Applied Forces 

 

The load on any structure causes the movement of the structure from 
the initial state to a new, deformed one. We will consider such a load 
that is applied to the structure so slowly, smoothly, that the resulting ac-
celerations of its elements, and therefore, the inertial forces of their 
masses can be neglected. The loading process is called static, and the 
corresponding load is called static. 

Let a rod made of a nonlinear elastic material undergo tensile force 
F  (Figure 7.2). 

The stress-strain diagram of this material is shown in Figure 7.3. 
 

       
 

Figure 7.2 Figure 7.3 
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The area of the diagram ,  as is known from the course “Strength of 
materials”, is equal to the specific potential energy 0u  (in other words, 
the energy density is the energy referred to the unit of the initial volume 
of the element) under a linear stress state. 

If we change the scale of the diagram    ordinates by introducing 
the dependencies N A   and ,l l    then we can get the dependence 
“load-displacement” that is often used in the practice of calculations 
(Figure 7.4). 

 

 
 

Figure 7.4 
 

In this figure symbol z  denotes some intermediate absolute elongation 
of the rod caused by force ( ),F z  and symbol   denotes  the displacement 

corresponding to the final (maximum) value of the force .F  
The work performed by force with infinitely small increase in dis-

placement by dz is determined by the expression: ( ) .dW F z dz   
Summing up the elementary work over the entire range of displace-

ments change we obtain a formula for determining the work performed 
by a statically applied external force :F  

 

0

( ) .W F z dz


   

 
For a linear-elastic rod, the ratio between force and displacement is 

linear (Figure 7.5). Therefore, ( ) ,F z k z  where k  is the stiffness coef-
ficient of the rod. 
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Figure 7.5 

 
The final value F  of the force corresponds to displacement .  The 

work of the statically applied force is calculated by the expression: 
 

2 2

0 0 0

( ) .
2 2

kz
W F z dz k z dz k

  
      

 

Since tg ,
F

k   


 then .
2

F
W


  

The work of an external statically applied force is equal to half 
the product of the value of this force by the value of the displace-
ment caused by it (Clapeyron`s theorem (1799–1864)). The work of a 
statically applied force on the displacement caused by the same force is 
called actual work. 

In the general case, by force it is necessary to understand not only 
concentrated force, but also moment and distributed load. The corre-
sponding displacements will be linear displacement in the direction of 
the force, angular in the direction of the moment, and the area of the dis-
placement diagram at the action region of the distributed load. 

With the mutual action on the system of several statically applied 
forces, their work is calculated as half the sum of the products of each 
force on the corresponding total displacement: 

 
1

.
2

i

i iW F                                         (7.1) 
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For example, with a static action on the beam of concentrated forces 

1,F  2F  and of concentrated moment M (Figure 7.6) the actual work of 
external forces is equal to: 

 

1 1 2 2 .
2 2 2

F F M
W

  
    

 

 
 

Figure 7.6 
 

The minus sign in the last term of the expression is accepted because 
the direction of the angle   of rotation of the cross-section of the beam 
and the direction of the moment M are opposite. 

 
7.3. Work of the Internal Forces 

in a Plane Linear-Elastic Bars System 
 

Under the static action of external forces on a deformable system, in-
ternal forces arise in its cross-sections. To determine the work of these 
forces, we cut out an element of length dx  (Figure 7.7, a) with the help 
of infinitely close located cross-sections (Figure 7.7, b). 

 

 
 

Figure 7.7 
 

With respect to this element, the forces ,N  M  and ,Q  which replac-
es the action of the discarded parts of the system on the selected element, 
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are external. Internal forces are equal to them, but opposite in direction. 
Internal forces are resist element deformations. Therefore, the work of 
internal forces is always negative. 

 

Note. In the formulas of Section 7.3 and below, the following nota-
tion will be used: 

A  – is an area of the bars cross-section; 
J  – is an axial moment of inertia of a cross-section; the denote of the 

moment of inertia yJ  in the Zhuravsky`s formula is associated with the 

axes in Figure 7.9;  
EA  – is a rigidity of the bar in tension-compression; 
EJ  – is a bending rigidity of the bar; 
GA  – is a shear rigidity of the bar. 
 

The impact on the element of longitudinal forces N  causes it to 

stretch by value 
N dx

dx
EA

   (Figure 7.8, a). On this displacement,  

a statically rising external force N  will perform elementary actual work: 
21

.
2 2N

N dx
dW N dx

EA
    The work of the internal longitudinal forces 

NdA  will be equal to it, but negative (the directions of the internal  
forces and the corresponding deformations are opposite). Consequently, 

2

.
2N N

N dx
dA dW

EA
     

 

 
 

Figure 7.8 
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At the angular displacement d  of the cross-sections caused by  
the action of the bending moment M (Figure 7.8, b) its work will be 

equal to 
1

.
2

M d   

Using the formula for determining the curvature 
2

2

1 d y M

EJdx
  


 of 

the axis of the bar, the expression of the angle of mutual rotation of the 

cross-sections can be written in the form .
dx M dx

d
EJ

  


 Then 

2

.
2M

M dx
dA

EJ
   

The tangential stresses in the cross-section, determined by the 
Zhuravsky`s formula: 

 

,
( )

cut
y

y

Q S

J b z
   

 

cause a mutual shear of the cross-sections Z dx dx
G


     (Figure 7.9). 

 

 

 
Figure 7.9 

 
To determine their work, we select the corresponding strips with an 

area dA  at the ends of the element .dx  Given the static nature of the 
load, we find that: 
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2

2
2 2

1
( )

2 2

,
2 ( ) 2

Q Z
A A

cut
y

yA

dx
dA dA dA

G

SQ dx Q dx
dA

G J b z G A

       

  
    

 
 

 



 

 

where 

2

( )

cut
y

yA

S
A dA

J b z

 
   

 
 
  – is the dimensionless coefficient depend-

ing on the shape of the cross-sectional area.  
For a rectangular cross-section  = 1,2; or round cross-section  = 1,18; 

for rolling I-beams approximately  is equal to the ratio of the area of the 
I-beam to the area of its wall. 

We obtain the full actual work of the internal forces of a plane bars 
system by integrating the expressions for elementary work along the 
length of each part of the bar and summing over all parts of the system. 
The total actual work of internal forces is equal to: 

 
2 2 2

int .
2 2 2

N dx M dx Q dx
A

EA EJ GA


                        (7.2) 

 

Since in the formula (7.2) value ,N  M  and Q  are squared, the work 
of internal forces is always negative. 

The relationship between loads and displacements (forces) is linear in 
linearly deformable systems. The relationship between the load and 
work, as follows from formula (7.2), is non-linear. The actual work of a 
group of simultaneously acting external forces is not equal to the sum of 
the actual works caused by each of the forces individually. The superpo-
sition principle of the action of forces in calculating the actual work is 
not applicable. 
 

7.4. Application of Virtual Displacements Principle 
to Elastic Systems 

 

We expand the concepts presented in section 2.4. 
An elastic system loaded by a given external action takes a definite 

deformed position. The displacements of the system points counted from 
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the initial (undeformed) state of the system till their corresponding posi-
tions in the deformed state are actual displacements. 

We set the virtual displacements for the considered system. Since the 
position of the elastic system in a deformed state is characterized by an 
infinitely large number of parameters, such a system is a system with an 
infinitely large number of degrees of freedom. The number of virtual 
displacements will also be infinitely large. 

As noted in section 2.4, while "passing" system from the deformed 
state to a new, which takes into account the virtual displacements, exter-
nal actions and internal forces do not change. Therefore, the work of ex-
ternal and internal forces on virtual displacements must be determined by 
the expressions: 

 
  ,virt

i iW F   
 

where Fi – generalized forces;  
 i – corresponding generalized displacement; 

 
 
int ,virt

i iA S e   
 

where Si – generalized internal forces;  
ei – corresponding generalized deformations.  

The work of internal forces is always negative. 
The formal notation of the principle of virtual displacements is the 

same as in section 2.4: 
 

( ) ( )
int 0.virt virtW А   

 
It is assumed that the constraints are ideal in an elastic system, and 

for virtual displacements, no work is required to overcome friction or  
to generate and release heat, etc. This is taken into account in inelastic 
systems. 

In practical applications, virtual displacements are the small dis-
placements that can be caused by force actions or other ones. For exam-
ple, for the beam state shown in Figure 7.10 (state “ i ”), as virtual dis-
placements one can take the displacements of the same beam loaded with 
another group of forces (state “ k ”).Then the virtual work of the external 
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forces of the state “ i ” at the displacements of the state “ k ” is written  
in the form: 

 

( )
1 1 2 2 .virt

k kW F F     
 

 
 

Figure 7.10 
 

The virtual work of the internal forces of the state “ i ”on the beam de-
formations in the state “ k ” will be equal to: 
 

( )
int .virt k k k

i i i
N dx M dx Q dx

А N M Q
EA EJ GA

          

 

The principle of virtual displacements is one of the basic principles of 
mechanics. It allows one to find equilibrium conditions, which are very 
important, without determining unknown links reactions. 

If actual displacements are taken for virtual displacements, then the 
virtual work of external and internal forces will be determined by the ex-
pressions: 

 

( ) ,
i

virt
i iW F   

 

2 2 2
( )
int ,virt N dx M dx Q dx

A
EA EJ GA


                      (7.3) 

 

where ( )virtW  is virtual work of external forces; 
( )
int

virtA  is virtual work of internal forces. 

Note that the concept of the virtual displacement (indicated by a sym-
bol )  was introduced by Lagrange. In the classical treatise "Analytical 
Mechanics" (1788; Russian transl., Vols. 1–2, 2 ed., 1950), he consid-
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ered the “general formula”, which is the principle of virtual displace-
ments, as the basis of all statics, and the “general formula”, which is a 
combination of the principle of virtual displacements with the D'Alem-
bert principle, he considered as the basis of all dynamics. 

 
7.5. Theorems of Reciprocity Works and Displacements 

 
Suppose that a linearly deformable system (Figure 7.11, a) is sequen-

tially loaded first with force ,iF  and then with force .kF  
 

 
 

Figure 7.11 
 

When the beam proceeds from position 1 to position 2, then the actual 

work of the force iF  on the displacement ii  is equal to 
1

.
2ii i iiW F   

When the beam proceeds from position 2 to position 3, then the actu-

al work of the force kF  is equal to 
1

,
2kk k kkW F   and the force ,iF  

remaining unchanged at this time, does the virtual work ik i ikW F   on 

the displacement .ik  The total work of two forces will be equal to: 
 

1 .ii kk ikW W W W    
 

If the beam is loaded in the reverse sequence (first by force ,kF  and 

then by force iF  (Figure 7.11, b)), then we obtain: 
 

2 .kk ii kiW W W W    
 

Since the value of the work of external forces is equal to the potential 
energy of the system and, regardless of the loading sequence, in both 
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cases the initial and final positions of the beam coincide, then 1 2.W W  
So, we have the equation: 

 

.ik kiW W                                           (7.4) 
 

In expanded form: 
 

.i ik k kiF F    
 

A formal record of the theorem of reciprocity work is obtained (Bet-
ty's theorem (1823–1892)): the work of the forces of the state “i” on 
the displacements of the state “k” is equal to the work of the forces 
of the state “k” on the displacements of the state “i”. 

Note, that in the above formulation, the term “force” should be un-
derstood as “generalized force”, which can be a group of forces, and the 
term “displacement” as “generalized displacement”. 

A similar dependence exists for the virtual work of internal forces on 
the corresponding deformations. Then the statement of the theorem of 
reciprocity work can be given in the following form: the virtual work of 
the external (internal) forces of the state i  on the displacements  
(deformations) of the state k  is equal to the work of the external  
(internal) forces of the state k  on the displacements (deformations) 
of the state i.  

 

E x a m p l e. A beam (Figure 7.12) of a constant section in state 1 is 
loaded with a uniformly distributed load of intensity ,q  and in state 2 it 
is loaded with a concentrated moment M  applied at the end point. Show 
the validity of the theorem of reciprocity work. 
 
 

 
 

Figure 7.12 

State 1 State 2
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The generalized force in state 1 is the load .q  Its virtual work is de-

fined as the sum of elementary works of the forces q dx  on the dis-

placement 2y  of the state 2: 
 

12 2 2
0 0

,
l l

W q dx y q y dx q      

 
where   is the area of the diagram of the vertical displacements of the 
beam in the state 2.  

To determine   we find the equation of the bended axis of the beam. 
The differential equation of the bended axis is written in the form: 

 

2( ) .
M

EJ y x x
l

    

 
Sequential integrating gives: 

 

2
2 1( ) ,

2

M
EJ y x x c

l
     

 

3
2 1 2( ) .

6

M
EJ y x x c x c

l
     

 
Using the boundary conditions 20 0x y   and 2 0,x l y    

we find: 
 

3

2( ) .
6

M x
EJ y x l x

l

 
    

 
 

 
Then: 

 
3 3

2
0 0

( ) .
6 24

l lM x M l
y x dx l x dx

EJ l EJ

 
       

 
   
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The virtual work is: 
 

3

12 .
24

q Ml
W

EJ
  

 

The virtual work of the concentrated moment M  is 21 .BW M   
Displacements and angles of rotation of the beam in state 1 are de-

termined from the equations: 
 

3 4
3

1
1

( ) ,
24 12 24

q l q l q x
y x x x

EJ

 
   

 
 

 

3 3
2

1
1

( )
24 4 6

q l q l q x
y x x

EJ

 
    

 
. 

 

When 
3

1( ) .
24B
q l

x l y x
EJ

      

The direction of action of the moment M  coincides with the direc-
tion of displacement ,B  therefore: 

 

3

21 .
24

M q l
W

EJ
  

 

Consequently, 12 21.W W   
If the generalized forces in the states “ i ” and “k” are equal to one 

(displacements from unit forces are indicated by the symbol δ, Figu- 
re 7.13), then it follows from theorem (7.4) that: 

 

.ik ki                                             (7.5) 
 

 
 

Figure 7.13 
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Equality (7.5) expresses one of the general properties of linear-
ly deformable systems and is a formal record of the theorem of 
reciprocity displacements (Maxwell's theorem (1831–1879)): dis-
placement in the i-th direction from the k-th unit force is equal 
to displacement in the k-th direction from the i-th unit force. 

Remark on the dimension of displacement .ik  The generalized 

displacement ,ik  caused by the generalized force ,kF  is defined as 

.ik ik kF    Therefore, the dimension of displacement ik  is ob-
tained in the form: 

 

 dimension of ik =
 

 
ik

k

dimension of

dimension of F


. 

 

For example, when loading the beams shown in Figure 7.14, we have: 
 

21
21 21

1

,  dimension f
F

o


   = rad/kN= kN–1; 

 

12
12 12

2

,  dimension f
F

o


   = m/( kN·m) = kN –1. 

 

 
 

Figure 7.14 
 

Displacements 12  and 21  have the same dimension. 
 

7.6. General Formula for Determining Plane Bars System 
Displacements 

 
Suppose that the bars system (Figure 7.15, a) has been deformed un-

der the influence of given actions, and it is required to determine the dis-
placement of any of its points i in a predetermined direction that does not 
necessarily coincide with the true direction of displacement of this point. 
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Considered system state we denote as a “state a ”, and internal forces in 
the cross-sections of the elements we denote by , , .a a aN M Q  In general, 

there are elongation ,dx dx    bending d dx    and shear z dx    
deformations in the infinitesimal element of this system in the deformed 
state. Here, dx  is the length of the element,   is the relative elongation 

(shortening) of the element, 
1

 


 is the curvature of the bended axis,  

  – is the relative shear (angle of shear) of the edges of the element. 
To determine the required displacement we consider the auxiliary 

(fictitious) state of the system. In this auxiliary state, we attach a unit 
generalized force to the same system in the direction of generalized  
unknown displacement (Figure 7.15, b). 

 

 
 

Figure 7.15 
 

The internal forces in this state (state i ) of the system are denoted by 

iii QMN ,, . Since this state is a state of equilibrium, the principle of 

virtual displacements can be applied to it. For virtual displacements, we 
take the displacements caused by a given action. The total work of the 
external and internal forces of the state i  on the displacements of the 
state a  should be equal to zero (7.3), that is: 

 
( ) ( )

int 1 0virt virt
ia i i iW A N dx M dx Q dx               

 

Integration is carried out along the length of each bar or section of the 
bar, during which the integrand is a continuous function of a certain kind. 
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Consequently,  
 

.ia i i iN dx M dx Q dx                          (7.6) 

 

The obtained formula allows us to express the required displacement 
through deformations of the system elements in the state ,a  and the sys-
tem itself can be both linear and physically nonlinear. The cause of the 
deformation of the elements is also insignificant: force impact, change in 
ambient temperature, creep of the material or other reasons. Therefore, 
formula (7.6) can be considered as a general formula for determining the 
displacements of bars systems. 

The state of the system under the action of a given load is called loaded 
state (state ).F  From the course of resistance of materials it is known that 
the deformations of elements of a linearly deformable system in this state 
are determined through internal forces as follows: 

 

, , ,F F FN dx M dx Q dx
dx dx dx

EA EJ GA


       

 
where , ,EA EJ GA  – the rigidity of the element, respectively, in tension 
(compression), bending and shear. 

Substituting these expressions in (7.6), we obtain a formula for de-
termining the displacements of a plane bar system in the following form: 

 

.i F i F i F
iF

N N dx M M dx Q Q dx

EA EJ GA


              (7.7) 

 
This formula is called the Maxwell-Mohr formula for determining the 

displacements of elastic systems caused by a given load. 
The relative contribution of each of the three terms of formula (7.7) 

to the final result depends on the type of the bars system and the nature 
of loading. In particular, it appears that the displacements in the beams 
depend mainly only on the second term (bending moments); the propor-
tion of the term, taking into account the influence of shear forces, is a 
negligible fraction of the final value .iF  Therefore, with sufficient ac-
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curacy for practical purposes, the displacements of systems that primari-
ly perceive bending can be calculated by the formula: 

 

.i F
iF

M M dx

EJ
    

 
For the same reason, the calculations (especially “manually”) of the 

frame and arch systems neglect the influence of longitudinal and shear 
forces in determining displacements. At the same time, the automated 
calculation of these systems using computer programs is carried out, as a 
rule, taking into account bending moments and longitudinal forces in 
determining displacements. 

In elements of trusses with hinged joints only longitudinal forces 
arise from the node loads. Therefore, the determination of the displace-
ments of nodes in the trusses is made according to the formula: 

 

0

.
l

i F
iF

N N dx

EA
    

 
Since with a nodal load on the truss, the longitudinal force along the 

length of the rod does not change, then, provided that the rigidity of each 
rod is constant, the formula is rewritten in the form: 

 

1
,

n
ki kF k

iF
k k

N N l

EA
                                    (7.8) 

 
where kl  – the length of the k-th rod; 

n  – number of truss rods. 
In this form (7.8), for the first time in 1864, J. Maxwell ob-

tained a formula for determining the displacements of trusses. 10 
years later, O. Mohr (1835–1918) developed a method for deter-
mining displacements for the case of arbitrary deformations of the 
system (see formula (7.7)). 

Let us explain the features of the choice of the auxiliary state. A sin-
gle generalized force must be applied to the system in the direction of the 
corresponding generalized displacement. Their product, as you know, 
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gives the work of force 1F   on the required unknown displacement. If, 
for example, for the frame in the state F  (Figure 7.16, a), it is necessary 
to determine the angle of rotation of any cross-section of the element, for 
example, the cross-section D , then in the auxiliary state in this section it 
is necessary to apply a single concentrated moment 1 1M   (Figu- 
re 17.16, b), and then the virtual work of the external force in the state 
“1” on the displacement of the state “F” will be equal 1 11 .FM     
Subsequently, the index of the unit load in the auxiliary state will deter-
mine the number of this state. 

 

 
 

Figure 7.16 
 

If it is necessary to determine the change in the distance between 
points k1 and k2, then in the auxiliary state (state 2) two unit forces  
directed in opposite sides should be applied along the direction of the 
line connecting these points (Figure 7.16, c); if it is necessary to find the 
angle of mutual rotation of the cross-sections с1 and с2, then in the auxi-
liary state (state 3), two opposite-directional moments should be applied 
in these cross-sections (Figure 7.16, d) each being equal to the unit. 

The directions of unit forces given in auxiliary states correspond to 
positive directions of displacement .iF  If the result of the calculation is 

0,iF   then it will mean that the required displacement is directed in 

the direction opposite to the direction of the force 1.iF   
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7.7. Mohr Integrals. Ways for Calculation  
 

The problem of calculating displacements using the Mohr's formula 
reduces to calculating integrals of the form 

 

,
b

i F

a

M M dx

EJ  

 

which are commonly called Mohr integrals. For relatively simple prob-
lems, the integrant  
 

( ) i FM M
f x

EJ
  

 

can be such that the indefinite integral ( )F x  can be expressed using a 
finite number of elementary functions. Then a definite integral is calcu-
lated by the formula  
 

( ) ( ) ( ).
b

a

f x dx F b F a   

 

Let us show, for example, the determination of the vertical displace-
ment of cross-section 1 and the angle of rotation of cross-section 2 of the 
cantilever beam (Figure 7.17), loaded with a uniformly distributed load. 
The influence of only bending moments to deflection only we will take 
into account. 

 

 
 

Figure 7.17 
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To determine the deflection, we use the auxiliary state 1. In the fu-
ture, the designations of forces from dimensionless forces will be ac-
companied by the upper line. Then: 

 

2
10.5 , 1 .FM qx M x     

 

Taking the bending rigidity of the beam EJ  constant along its 
length, we obtain: 

 

2 4
( ) 1

11
0 0

1
( ) ( ) .

2 8

l l
vert F

F
M M dx qx ql

x dx
EJ EJ EJ

          

 

To determine the angle of rotation of the cross-section in the middle 
of the beam, we use the auxiliary state 2. Then: 

 

2

;
2F

q x
M    

2 0M  , if 0 ;
2

l
x   
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For the same example, when calculating the area of the deflection di-
agram using the auxiliary state 3 (the beam is loaded with a unit uni-
formly distributed load), we obtain: 
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The indicated method of calculating the Mohr integrals can lead to 
significant difficulties, since a very complex formula either can be ob-
tained, or cannot be obtained at all for an indefinite integral ( ).F x  

In practice, integrals, such as 1 2

3

( ) ( )

( )

b

a

f x f x
dx

f x  are calculated graph-

analytically or using numerical integration. 
But for the case when the bar has constant rigidity in the integration 

area, that is 3( ) const,EJ f x   and one of the function 1 ( )f x  or 

2 ( )f x  is linear, the method proposed by A. K. Vereshchagin is usually 
used. This method is one of the most effective methods of calculating 
definite integrals. Let us explain its essence. 

We plot the graphs of functions 1( )f x  and 2( )f x , that is, dia-

grams of bending moments ( )iM x  and ( )FM x  on the integration 
area (Figure 7.18). 

 

 
 

Figure 7.18 
 

Suppose, for example, diagram iM  is rectilinear (Figure 7.18, b). 
The reference point is the intersection point of the bar axis with the  
diagram inclined line. Then ( ) tg ,iM x x   and the Mohr integral is 
converted to 
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1
.

b b b
i F

F F
a a a

M M dx tg
x tg M dx x M dx

EJ EJ EJ


      

 

The integral ,
b

F
a

x M dx  by definition, is the static moment of the ar-

ea of the diagram FM  (Figure 7.18, a) relative to the axis y . The static 
moment is equal to the product of the area of this diagram by the dis-
tance from its center of gravity to the axis, that is: 

 

0.
b

F
a

x M dx x   

 
Given the ratio 0 0 /tg ,x y   we get: 

 

0 .
b

i F

a

M M dx y

EJ EJ


                                   (7.9) 

 
Thus, the Mohr integral is calculated by multiplying the area of the 

curvilinear diagram with the ordinate of the rectilinear diagram, taken 
under the center of gravity of the curvilinear one. 

The process of calculating the integrals by Vereshchagin's method is 
sometimes called the “multiplication” of diagrams. The positive sign of 
the product у0 is taken when the diagram M , whose area is denoted by 
 , and the ordinate y  have the same signs, i.e., when they are located 
on one side of the bar. In practice, one can be guided by a simpler rule: if 
both diagrams of efforts for certain section of the bar are located on one 
side of its axis, the result of their  “multiplying” is accepted as positive, 
if diagrams are located on opposite sides of the bar, the result of their  
“multiplying”  is accepted as negative. 

When using the Vereshchagin's rule, complex diagrams of the inter-
nal forces should be represented as a sum of simple ones, for each of 
which formulas for area calculation and gravity center position are 
known. Examples of the simple diagrams are bending moment diagrams 
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for cantilever or single-span beams loaded with concentrated force or 
uniformly distributed load (Figure 7.19). 

 

 
 

Figure 7.19 
 

To obtain simple diagrams, the principle of independence of the ac-
tion of forces should sometimes be used. 

 
E x a m p l e. Determine the vertical displacements of points A and B 

(Figure 7.20) of the beam with constant rigidity. 
Diagrams of bending moments for a beam from a given load and unit 

forces are shown in Figure 7.20. 
 

3
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1 1

2 .
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EJ EJ EJ EJ
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F
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EJ EJ EJ EJ


         
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Figure 7.20 
 

Ex a m p l e. Determine the vertical displacement of the point D  and 
the angle of rotation of the cross section C  of the beam with constant 
rigidity (Figure 7.21, a). 

 

 
 

Figure 7.21 
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To determine the vertical displacement of a point D  we load the 
beam with force 11 F  (Figure 7.21, c) and construct the corresponding 
diagram of bending moments (Figure 7.21, d). 

Using the principle of superposition, we represent the diagram FM  
in the form of two simple ones (Figure 7.22) and determine the dis-
placement according to the Vereshchagin's rule: 

 

1 0
1

1 1 1 1 2 186.67
20 8 80 8 0.5   m.

2 3 3

F
F

M M dx y

EJ EJ

EJ EJ EJ


   

      

 
 

 

 
 

Figure 7.22 
 

The auxiliary state for determining the angle of rotation of cross-
section C is shown in Figure 7.21,e, and the corresponding diagram of 
bending moments is shown in Figure 7.21,f. 

 

2
2

1 1 1
20 8 0.5

2 3
1 2 93.33

80 8 0.25   rad.
3

F
F

M M dx

EJ EJ

EJ EJ

     

   


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E x a m p l e. Find the horizontal displacement of point A of the 
frame shown in Figure 7.23 a. 

The auxiliary state (state 1) is shown in Figure 7.22, b. The bending 
moment diagrams corresponding to the frame states are shown in Figu- 
re 7.23, c, d. 

1
1

1 1 1 16 32
16 4 3 6 4

3 2 2
1 1 2 1568

32 4 4   m.
2 3 3

F
F

M M dx

EJ EJ EJ

EJ EJ




       

  
 

 

 
 

Figure 7.23 
 

In this example, the required displacement is calculated as the sum of the in-
tegrals over three members. In each of them, the functions 1( )M x  and ( )FM x  
have well-defined analytical expressions. If through the length of one 
element the diagrams of moments are described by different functional 
dependencies, the element must be divided into the corresponding sec-
tions, the integrals must be calculated separately for each section, and the 
calculation results should be summarized. 

Once again, we note that the Vereshchagin's method cannot be ap-
plied in the case when both diagrams are non-linear. So, for example, it 
cannot be applied to calculating the area of the diagram of the deflec-
tions of a beam loaded with a uniformly distributed load. 
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The same rule for calculating integrals can be applied to the other two 
terms in the Mohr's formula for determining displacements. 

The value of a definite integral, as it is known, can be calculated us-
ing formulas of numerical integration, that are based on replacing the 
integral with a finite sum: 

 

 
0

( ) ,
b n

k k
ka

f x dx c f x


   

 
where kx  are the points of the segment  , :a b  

kc  are the numerical coefficients. 
Given equality, generally approximate, is called the quadrature for-

mula, points kx  are the nodes of the quadrature formula, and numbers 

kc  are called coefficients of the quadrature formula. The error of the 
quadrature formula 

 

 
0

( )
b n

k k
ka

f x dx c f x


     

 
depends both on the location of the nodes and on the choice of coeffi-
cients. Most often, a uniform grid of nodes is used in practical applica-
tions to the problems of structural mechanics; in this case, the initial in-
tegral is represented as the sum of the integrals over partial segments, on 
each of which a quadrature formula is applied. 

The simplest quadrature formulas for one interval are the rectangle 
formula 

 

( ) ( )
2

b

a

b a
f x dx b a f

     
 

  

 
and the trapezoid formula 
 

( ) ( )
( ) ( ) .

2

b

a

f a f b
f x dx b a


   
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Naturally, even in the case of functions close to linear, the use of the-
se formulas will lead to an error in the calculations of displacements. 

If concentrated forces or uniformly distributed load act on a system 
composed of rectilinear elements, the diagram of bending moments on 
separate sections of the element is limited to a straight line or parabola. 
If it is necessary for this system to determine the linear or angular dis-
placement of some point, in the auxiliary state, the contour of the dia-
gram “ M ” due to the load 1 1F   will be determined by linear relation-

ships ( ).M x  In this case, when 3( ) const,f x   then the function 

1 2( ) ( ) ( )f x f x f x  will be represented by a curve of the second or third 
degree. Then, on the segments of elements with constant rigidity, the 
Mohr integral can be calculated exactly using T. Simpson's formula (pa-
rabola formula): 

 

 1 2 3( ) 4 ,
6

b

a

l
f x dx y y y                             (7.10) 

 

where 1 2 3, ,y y y  are the values of the function at the end points of the 
segment and in the middle of it (Figure 7.24). 
 

 
 

Figure 7.24 
 

Simpson's formula is exact for any polynomial not higher than the 
third degree. 

Using the Simpson's formula, we determine the vertical displacement 
of the cross-section D  and the angle of rotation of the cross-section C  
for the beam shown in Figure 7.21: 
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1
1

2
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(0 4 70 0.5 0) , ;

6
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F
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EJ EJ EJ
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EJ EJ

        

      


 

 
The obtained values of the displacements coincide with those ones 

found according to the Vereshchagin's rule. 
 
E x a m p l e. Determine the angle of mutual rotation of the ends of 

the beams, adjacent to the hinge C (Figure 7.25). The bending rigidity of 
the beams is constant. 

Diagrams of bending moments for a beam from a given load and unit 
force are shown in Figure 7.25. 

 

 
 

Figure 7.25 
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1
1

1 2
20 4 0.5

3
4 1280

( 4 1.5 60 2 160)
6 3

F
F

M M dx

EJ EJ

EJ EJ

       

        


 

 

We offer the reader to show how the same value of the displacement 
can be calculated easier.  

 

E x a m p l e. Determine the horizontal displacement of the end of the 
cantilever broken beam (Figure 7.26, a). 

The diagram of bending moments caused by a given load is shown in 
Figure 7.26, b, from unit force 1 1F   is shown in Figure 7.26, c. 

 

 
 

Figure 7.26 
 

“Multiplication” of diagrams on a vertical element is made according 

to the Vereshchagin's rule, on an inclined one (its length is 10 m) – 
according to Simpson's formula: 
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1 1 2 10

1 3.75 1 3.75 4 5.625 1.5 37.5 2
2 3 6 2
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F EJ EJ

EJ EJ
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 
 
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If a function in a certain section of the element is a more complex than 
a polynomial of the third degree, which is possible for elements of curvi-
linear shape, or the rigidity changes along the axis of the element, or the 
load is non-uniformly distributed on it, the result of the calculation using 
the Simpson's formula will be approximate. 

On a partial section, the error is estimated as follows: 
 
5

,
2880

h
M   

 

where 

 
 

,
sup IV

x a b

M f x




, 

 

that is, on this section the Simpson's formula has accuracy  5O h , on 

the whole section accuracy is  4O h , while the trapezoid formula, like 

the formula of rectangles, has a second order of accuracy. 
 

E x a m p l e .  Using the Simpson's formula, determine the area of the 
deflection's diagram of the cantilever beam with a constant cross-section, 
loaded with a uniformly distributed load. 

Diagrams FM  and 1M  are shown in Figure 7.27. 
 

 
 

Figure 7.27 

                                                 
 Lat. supremus  is the highest. 
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Here: 
4

1( ) ( ) ( ) .
4F

qx
f x M x M x   

 
For the variant with one section of length l  we get: 

 
2 2 2 2 5

1 4 .
6 8 8 2 2 19.2F

l ql l ql l ql

EJ EJ

 
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The exact solution has been obtained earlier by direct integration.  

Area is 
5

1 .
20F

ql

EJ
   

If we accept 1
q

EJ
 , then the calculation error is 

5 5

19.2 20

l l
     

3 52.083 10 ,l   which corresponds to the previously given estimation 
5 5

3 56 2.083 10 ,
2880 2880

l l
M l    where it is accepted, that: 
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For the variant with two sections of length 
2

l
 we get: 

 

2 2 2 2

1

2 2 2 2 2 2 5

4
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The error is equal 
5 5

4 51.253 10 .
19.95 20

l l
l      On the entire inte-

gration interval, the error is estimated as follows: 
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4( )
.

2880

h b a
M


   

 

In this case ,
2

l
h b a l    and, therefore, 

5

6
16 2880

l
  


 

4 51.302 10 .l   
The Simpson's formula is set on three equally spaced nodes.  

In some cases, quadrature formulas are applied with a large number of 
equally spaced nodes. In particular, such a formula, built on four nodes, 
is the following one: 

 

2( )
( ) ( ) 3 3 ( ) .

8 3 3

b

a

b a b a b a
f x dx f a f a f a f b

                   
  

 
This formula is sometimes convenient to use to multiply linear dia-

grams of the internal forces. The result of this calculation is accurate. For 
example, if the multiplied diagrams have the form shown in Figure 7.28, 
the Mohr's integral in this section will be equal to: 

 

 1 2
0

1
( ) ( ) .

8

l l
f x f x dx a c b d

EJ EJ
    

 

 
 

Figure 7.28 
 

In general, formulas with a large number of equally spaced nodes are 
applied relatively rarely. 
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7.8. Determining Displacements Caused by the Thermal Effects 
 

Suppose that for a system in state а (Section 7.6) the external influ-
ence is thermal one: the temperature of systems elements has changed 
with respect to some initial state. For an infinitely small element (Figu- 
re 7.29) of this system, we take the temperature of the lower fiber equal 
to t1, the upper one equal to t2. And the temperature distribution along 
the cross-section height is accords to the linear law. 

 

 
 

Figure 7.29 
 

The temperature on the axis passing through the center of gravity of 

the cross-section will be equal 1 2
2 2.

t t
t t h

h


   When 1 2h h  we get 

1 2

2

t t
t


 . 

Under the influence of temperature, the element moves to a new posi-
tion (it is indicated by a dashed line). In this new position, all the fibers 
are extended by an amount td dx    t dx  and each lateral face is 

rotated by an angle 
2

td
 relative to the axis passing through the center  

of gravity. 
The elongation of the lower fiber is equal to 1 ,t dx  and the upper 

one is equal to 2 ,t dx  ( is the coefficient of linear expansion). Then, 
due to small deformations, we obtain: 
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td k dx  
 1 21 2 ,
t tt dx t dx t dx

dx
h h h

     
   

 
where 1 2t t t    is the temperature difference. 

Since temperature deformations do not cause a cross-sectional shear, 
substituting td  and td  in the general formula (7.6) for determining 

displacements and replacing the index a  in the designation ia  by t  
(indicates the reason that caused the displacement), we obtain: 

 

.it i i
l l

t
N t dx M dx

h


                           (7.11) 

 
Note that each of the integrals in this expression determines the work 

of the internal forces of the auxiliary state of the system on displace-
ments caused by a change in temperature. Therefore, the values of the 
integrals are accepted positive on the integration interval in the case 
when the corresponding directions of the element deformations, caused 
by the forces of the i-th (auxiliary) state and by thermal action, coincide. 

If the values , ,t t  and h  remain unchanged in some parts of the 
elements, the expression (7.11) is converted to the form: 

 

,it N M
t

t
h


                                (7.12) 

where  
,N i

l

N dx       M i
l

M dx    

 
are the areas of the diagrams of longitudinal forces and bending mo-
ments on the segments of the members with the specified features. 
 

E x a m p l e. Determine the horizontal displacement of the frame 
support B  (Figure 7.30, a) from thermal action indicated on the figure. 
Unchanged cross-sections through the length of each element are as-
sumed to be symmetrical. The height of the vertical element is 1,h  the 

height of the horizontal one is 2.h  
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Figure 7.30 
 

The temperature along the axis of each member is o20 10
15 ,

2
t


   

the temperature difference is o20 10 10 .t     
The auxiliary state of the frame is shown in Figure 7.30, b, and the 

diagrams of internal forces 1N  и 1M  are shown in Figure 7.30, c, d. 
We calculate the required displacement: 
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1 2 1 2

1
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            

  
        

 

 
 

 
E x a m p l e. Determine the angular displacement of the frame cross-

section K  (Figure 7.31, a) from the thermal action indicated on the figure. 
Unchanged cross-sections through the length of each element are assumed 
to be symmetrical. The height of vertical and horizontal elements is 

0.6 .h m  The coefficient of linear expansion is  6 о 110 10 С    . 
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The temperature along the axis of members is: 
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 
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the temperature differences are: 
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Figure 7.31 
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The auxiliary state of the frame and the diagrams of internal forces

1M  and 1N  are shown in Figure 7.31, b, c, d. 
We calculate the required displacement: 

 

1 1

6
1

1
10 10 5 0 5 4 10 0

6
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                           
     

               

 

 

 
7.9. Determination of Displacements  

Caused by the Settlement of Supports 
 

Suppose that the support connections of a given statically determinate 
system (Figure 7.32, a) under the influence of some actions moves to the 
positions shown in Figure 7.32, a: rigid support turned clockwise by an 
angle 1,c  and the hinged-movable support moved upward by 2.c  We 

denote this state of the system as state с. To determine the displacement 
of a point, for example, the horizontal displacement of the node D , we 
apply a force 1iF   in the auxiliary state in the direction of the required 
displacement (Figure 7.32, b). 

 

 
 

Figure 7.32 
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We define the work of the forces of the i-th state of the system at its 
displacements in the state .c  There are no internal forces in a state :c  
displacements of the supports of a statically determinate system do not 
cause forces in its elements. Therefore, only external forces, which  
include support reactions, will do the work on the displacements of  
the state c . In accordance with the principle of virtual displacements, 
we obtain: 

 

1 0,ic ki kR c     
 

where kiR  is the reaction in k-th support link caused by 1;iF   

kc  is the given displacement of link .k  
So it follows that 

 
.ic ki kR c                                     (7.13) 

 
The sign of the product ki kR c  is assumed to be positive if the direc-

tions of kiR  and kc  coincide. 
For this example, we get: 

 

1 2
1 2 .

2 2
horiz
D iс ki k

h h c c
R c c c h

l l
                
   

  

 
E x a m p l e. Determine the horizontal displacement of the frame 

cross-section K  (Figure 7.33, a) caused by the settlement of supports 
indicated on the figure. 

 
According to (7.13), the expression for the requied displacement is: 
 

.horiz
KC ki kR c    

 
The auxiliary state of the frame for determining support reactions 

caused by a unit concentrated force applied to the cross-section K in the 
horizontal direction is shown in Figure 7.33, b. 
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Figure 7.33 
 

A given system is a statically determinate compound frame. We find 
support reactions from equilibrium equations: 

 

0 : 6 0 0 ;

0 : 12 2 1 6 0
0.4 , 0.6 ;

0 : 6 4 0

0 : 12 2 1 4 0
0.4 , 0.4 .

0 : 6 6 0

D E E

A B B
B Bright

B BC

B A A
A Aleft

A AC

M V V kN

M V H
V kN H kN

M V H

M V H
V kN H kN

M V H

    

          
      

          
      







 
We calculate the required displacement: 

 

 0.4 0.06 0.4 0.06 0.4 0.1 0.6 0 0 0 0.04 .horiz
KC m              

 

Here the «–» sign is accepted before 1AH c  and 3BV c , since the di-
rection of the reaction and the corresponding settlement do not coincide. 

In conclusion, we note that if a given linearly deformable system is 
simultaneously exposed to external load, temperature changes, the displa-
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cement of supports or other exposures, the required total displacement is 
determined by summing the components from each exposure separately. 

The features of determining displacements in statically indeterminate 
systems will be described below. 

 
7.10. Matrix Form of the Displacements Determination 

 
Сonsider this question in relation to the plane trusses. In practical 

problems of trusses calculating, it is important to be able to determine 
the displacements of each node in horizontal and vertical directions. The 
total number of unknown displacements with this approach will be equal 
to the number of degrees of freedom of the nodes 2m N L   (there are 
no displacements of nodes in the directions of the support links). In Fi-
gure 7.34, a unknown displacements of nodes are shown by arrows. 

 

 
 

Figure 7.34 
 

To determine the displacement i  we take the auxiliary state as 

shown in Figure 7.34, b: load 1iF   is applied in the direction of the 

required displacement. In this figure, a designation of the force kiN  ari-

sing in the rods is shown near each rod of the truss, where the index k  
corresponds to the number of the rod. The index n  corresponds to the 
number of the last truss member. 

From formula (7.6) it follows that 
 

10

,
l n

i i ki k
k

N dx N l


       

 

where kiN  is the force in the k -th rod caused by 1;iF   

kl  is absolute deformation of the k -th truss rod. 
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An expanded record of the last expression with respect to all calculat-
ed displacements will appear as the following equations: 

 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

,

,
n n

n n

m m m nm n

N l N l N l

N l N l N l

N l N l N l

       

       

             

       






 

 
or in matrix form: 

 

1 111 21 1

2 212 22 2

1 2

,

n

n T
N

m nm m nm

lN N N

lN N N
L l

lN N N

     
             
    
         


 

    


      (7.14) 

 

where 


 is the vector of nodal displacements; 
T
NL  is the matrix transposed with respect to the influence matrix ;NL  

l


 is the vector of absolute deformations of the rods. 
For statically determinate truss 2 ,m N L B    that is m n  and in 

this case the matrix NL  will be square. 
So, in order to find the displacements of the truss nodes, it is neces-

sary to know the deformations l  of the rods, determined in accordance 
with the action set on the system. 

When the temperature changes: 
 

,k k kl t l    
 

where   is the coefficient of linear thermal expansion; 

kt  is the temperature change of the k -th rod. 
If there are displacements due to inaccuracy in the manufacture of the 

rods, kl  is determined as the differences between the real and design 
values of the lengths of the rods. 
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When calculating a physically nonlinear system under the action of a 
load ,F  it is possible, using a nonlinear tensile (compression) diagram, 
to determine the corresponding elongation (shortening) kl  by a known 

effort .kFN  
If the material of the rods at a given load F  works in a linearly elas-

tic stage, then: 
 

,kF k
k k kF

k

N l
l d N

EA
    

 

where kEA  is the rigidity of the rod in tension (compression); 

k
k

k

l
d

EA
  is the coefficient of pliability of the k-th rod. 

Then for the vector of deformations caused by a given load, there is a 
dependence: 

 

1 1 1

2 2 2 ,

F

F
F

n n nF

l d N

l d N
l D N

l d N

     
             
     
          

 
  

         (7.15) 

 

where D  is the matrix of internal pliability of truss rods; 

FN


 is the vector of efforts in the truss rods from the load .F  
Substituting expression (7.15) into formula (7.14), we obtain a matrix 

notation of the formula for determining the nodal displacements of the 
truss due to the load :F  

 

.T
N FL D N 

 
                                    (7.16) 

 

To determine the displacements of bended systems due to the load 
,F  we will use the Simpson's formula. At the k-th section of the bar with 

variable bending rigidity, the Mohr's integral is written in the form: 
 

0

4
6

k
i F i F i F

B B M M E El
i F k

B M E

M M M M M MM M dx l

EJ EJ EJ EJ

 
   
 
 

 , 
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where the superscripts ,B  M  and E  indicate the values iM , FM , ... 

and EJ  at the beginning, middle and end of the integration section. 
We represent this expression in matrix form: 

 

0

6
4

6

6

F
k

i i i F

F

k
BB

l
B M E Mi F k

M

E
k

E

l

MEJ
M M dx l

M M M M
EJ EJ

Ml

EJ

 
   
   
          
   

  
  

  

 

,T
ki k kFL D M


 

 

where kD  is the diagonal matrix of pliability for the k-th section. 

For the variant of linear diagrams i , ,FM M   we obtain: 
 

,
2 2

i i
i

B E B E
M M F F

F

M M M M
M M

 
  , 

 
and then, at EJ   const, the computations in the section are reduced to: 

 

0

2

6 6
2

6 6

k

i i

k k
Bl
FB Ei F
E

k k F

l l
MM M dx EJ EJM M

l lEJ M
EJ EJ

 
  

          
  

 . 

 
Summing up the results of calculations for all sections, we obtain: 

 

.Ti F
iF ki k kF

k

M M dx
L D M

EJ
   


                  (7.17) 

 
Using the sequential docking of the bending moment vectors in all n 

parts of the system and introducing the matrix of pliability D for the en-
tire system into the calculation, the displacements calculation can be rep-
resented as follows: 



205 

1 2

1 1

2 2 .

T T T
iF i i ni

F

TF
i F

n nF

L L L

D M

D M
L D M

D M

    
  
  
   
  
  

   






 

               (7.18) 

 

If it is necessary to determine the displacements of several points of 

the system, the row-vector T
iL  should be replaced by a matrix ,TL  in 

each row of which values of bending moments caused by the i-th auxilia-
ry state are recorded. 

If the problem is to determine the displacements caused by different 
loadings, it is necessary to replace the vector FM


 with a matrix, in each 

column of which values of efforts corresponded to a certain load are  
recorded. 

With these remarks, the expression for determining the displacements 
of a bended system in the general case can be written as: 

 

11 12 1

21 22 2

1 2

(1) (2) ( )
11 21 1 1 1 11

(1) (1) ( )
212 22 2 2 2 2

(1) (1) ( )
1 2

t

t

m m mt

tT T T
n F F F

tT T T
n F F F

tT T T nm m nm nF nF nF

M M ML L L D

D M M ML L L

D M M ML L L

   
      
 
    

                       




   


  


  


       
  



.TL DM



  

 
 



 (7.19) 

 

In this expression, the index m  corresponds to the number of deter-
mined displacements for one loading, the index t  corresponds to the 
number of independent loadings. 

If ,M L  the matrix   will be a matrix of external pliability A of 
the flexible bars system: 
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.T
M MA L D L                                     (7.20) 

 

The same remark applies to formula (7.16). Replacing the vector FN


 

with the matrix ,NN L  as a result of the calculations we obtain the 
truss pliability matrix: 

 

.T
N NA L D L                                      (7.21) 
 

7.11. Influence Lines for Displacements 
 

The theorem of reciprocal displacements is used to solve various 
problems in mechanics. In particular, the influence lines for displace-
ments are relatively easy to obtain. Suppose, for example, it is necessary 
to construct the influence line for the rotation angle k  (Figure 7.35, a). 
Each new position of the unit force (Figure 7.35, b) corresponds to a cer-
tain value of the rotation angle ( 1 2, , ...).k k   At the same time, on the 
basis of the reciprocity theorem, these displacements can be determined 
each time by uploading the beam with a fixed generalized force 1kM   

(Figure 7.35, c). Consequently, the shape of the influence lines for k  
coincides with the diagram of the vertical displacements of the beam axis 
caused by force 1.kM   The equation corresponding to this load for the 
bent axis of the beam is written in Section 7.5. 

 

 
 

Figure 7.35 
 

An analysis of the results of the last example (Figure 7.35) shows that 
the practical task of constructing influence lines for displacements of a 
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linearly deformable system, on the one hand, can be associated with its 
calculation on the set of unit loads in characteristic sections, and then 
with the determination of the required displacement for each of them. On 
the other hand, this task may be connected with the calculation of the 
system for one load and the determination of the corresponding dis-
placements in those cross sections in which the unknown shape of the 
influence line can be represented by the found displacements. The se-
cond solution is generally preferred. 

We illustrate it with the example of a multi-span statically determi-
nate beam (Figure 7.36), for which we will construct the influence line 
for 3.  From the calculation of the loading beam by force 1 1F   we can 

find only one ordinate 31  of the influence line for 3  (Figure 7.36, b), 

from the calculation at the action of the force 2 1F   we can find the or-

dinate 32  and so on. A simpler technique is to construct an influence 

line 3  as a diagram of vertical displacements of the axis of the beam 

from the action of the force 3 1F   (Figure 7.36, c). In Figure 7.36, d it is 

shown the view of Inf. line for 3  taking into account generally accepted 
construction rules: positive ordinates are located above the axis of the 
beam, negative ones are below. 

 

 
 

Figure 7.36 
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7.12. Influence Matrix for Displacements 
 

The vertical displacement, due to the given load, of the cross-section i, 
for which the influence line for displacement is constructed, can be cal-
culated by the formula: 

 

1 1 2 2 ,iF i i in nF F F         
 

where 1,F  2 ,F ..., nF  – are concentrated vertical forces applied in char-
acteristic sections. 

With the value of the index i  = 3 we get the expression for calculation 

3F  using the influence line (Figure 7.36, d). 

Applying the expression for iF  to each characteristic cross-section 
and using the matrix form for recording the transformations, we obtain 

the value of the displacement vector :F


 
 

1 11 12 13 1 1

2 21 22 23 2 2

1 2 3

,

F n

F n
F

nF n n n nn n

F

F
A F

F

         
                 
          
              


 

 


 

 

where                    A 

11 12 13 1

21 22 23 2

1 2 3

n

n

n n n nn

    
     
      
     






 

 
is the influence matrix for displacements.  

The components of the k-th column are the ordinate values of the dis-
placements diagrams constructed due to 1,kF   which corresponds to the 

general definition of the influence matrices. Since the conditions ik ki    
are fulfilled, the matrix A  is a symmetric matrix and, therefore the influ-
ence lines for i  can be constructed from the elements of the i-th column 
or i-th row. 
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In the case of systems of arbitrary outline, not necessarily the beams, 
displacements ik  may have different orientations in space. They deter-

mine the pliability of the system at some point i in a given direction (i-
th) caused by the unit force applied at a point к . Therefore, the matrix A  
is called the pliability matrix of the system. To calculate it, one can use 
formulas (7.20) and (7.21). 

 
E x a m p l e .  Calculate the matrix A  of the external pliability of the 

frame in the given directions (Figure 7.37). 
 

 
 

Figure 7.37 

 
Diagrams of bending moments caused by the action of unit forces in 

given directions are shown in Figure 7.38. 
 

 
 

Figure 7.38 
 

When compiling the influence matrix ,ML  we will consider the ordi-
nates of the diagrams ,M  located inside the frame contour as positive. 



210 

The pliability matrix A  is calculated as follows: 
 

11 12 13

21 22 23

31 32 33

0 2 4 4 2 0 0 2 4

0 0 0 0 0 0 0 2 4

0 0 0 1 0.5 0 0 0 0

T
M MA L D L

   
       
    

   
 

 

 

 

4

6
4 4

6
4

6
5

6 2
4 5

6 2
5

6
4

6
4 4

6
4

6

0 0 0

2 0 0

4 0 0
168 64 104 0 1

1
64 64 0 .2 0 0.5

3
10 0 2.50 0 0

0 0 0

2 2 0

4 4 0

EJ

EJ

EJ

EJ

EJ

EJ

EJ

EJ

EJ

EJ




 







 

  
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THEME 8. FORCE METHOD AND ITS APPLICATION  
TO PLANE FRAMES CALCULATION 

 
8.1. Statically Indeterminate Systems and Their Properties 

 
Statically indeterminate systems are those systems in which not all in-

ternal forces can be found from the equilibrium equations. 
In statically indeterminate systems, the number of unknown efforts 

exceeds the number of independent equilibrium equations. For example, 
to determine the four support reactions of the beam (Figure 8.1, a) aris-
ing from the action of any load on it, only three independent equilibrium 
equations can be compiled. 

Consequently, in all cross-sections of the beam in the AC region, the 
internal forces cannot be determined. If in this beam we remove the sup-
port rod at a point B (Figures. 8.1, b) or introduce a hinge in a region BC 
(Figures. 8.1, c), then we obtain the design schemes of statically deter-
minate beams. The constraints that can be removed from the beam (and 
in the general case, from any system) without changing its properties of 
geometrical unchangeability and unmoveability are called redundant 
constraints. The number of redundant constraints, the elimination of 
which turns the system into to the statically determinate one, is called the 
degree of static indeterminacy of the system (degree of redundancy). The 
beam shown in Figure 8.1, a, has statical indeterminacy of the first degree. 

 
DAа) CB

б)

с)
 

 
Figure 8.1 

 
The same can be said about the design scheme of the truss (Figure 8.2). 

It is possible to find support reactions and forces in rods 3–5 and 4–5 

a)

b)

c)
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caused by the load applied to its nodes solely using equilibrium equations, 
but the efforts of the rest of the rods remain unknown. Among these rods, 
there is one redundant, so the truss is statically indeterminate once. 

 

 
 

Figure 8.2 
 

We note once again that the term “redundant constraint” should be 
understood from the point of view of the geometrical unchangeability 
and unmoveability of the system. According to the working conditions 
of the structure, these constraints are necessary; in their absence, the 
strength and rigidity of the structure may be insufficient. 

Any constraint can be accepted as a redundant constraint, the elimina-
tion of which will not change the immutability and immobility of the 
system. So, for the scheme in Figure 8.1 as redundant constraint, you can 
take any vertical support rod or, in any cross-section on the region AC, 
the constraint, through which the bending moment is transmitted from 
one section of the beam to another. 

The degree of the static indeterminacy of a structure is an important 
characteristic of a structure. 

Statically indeterminate systems have the following properties. 
1. The thermal effect on the system, the displacement of the supports or 

the inaccuracy of the manufacture of its elements with their subsequent 
tension during assembly cause, in the general case, additional forces in a 
statically indeterminate system. In a statically determinate system, these 
factors cause only displacements of the elements, while internal forces do 
not arise. 

Here are some examples. 
Let’s consider the temperature of the lower fibers of the beam (Figu-

re 8.3, a) is equal 1,t  and the upper ones is 2,t  and 1 2.t t  If there was 
no support link at the point B, then the cantilever beam AB due to the 
indicated action would have taken a position shown by a dashed line. To 
return the beam from this position to the initial (undeformed) position, it 
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is necessary to apply a force 1X  at the point ,B  equals to the reaction 
that arises in the support B  from temperature changes. 

The displacement of the support point C  to the position C  provokes 
bending of the beam AC  (Figure 8.3, b), which indicates the appearance 
of bending moments and transverse forces in the beam cross-sections. 

 

       
 

Figure 8.3 
 

If we assume that in the truss (Figure 8.2) the length of the rod 1–4 
turned out to be less than the size required by the project, then in order to 
attach its ends to the nodes, the rod would have to be pulled. This means 
that the entire group of rods of this panel of the truss will undergo addi-
tional forces even before the given load is applied, in particular, rods 1–4 
and 2–3 will be stretched, and four other rods will be compressed (the 
initial stress state arises). 

2. The forces in statically indeterminate systems arising from an ex-
ternal load depend on the ratios of the rigidity of the system elements. 

Compare, for example, the distribution of bending moments in the 
frame (Figures 8.4, a, b) with different ratios of bending rigidity of the 
members. 

 

 
 

Figure 8.4 
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The forces in these systems, arising from thermal effects and settle-
ments of supports, depend on the rigidity values of the members. 

3. A system with n redundant constraints retains geometrical immu-
tability even after the loss of these constraints, while a statically deter-
minate system, after the removal of at least one constraint, turns into a 
changeable one. 

4. The displacements of statically indeterminate systems are, as a 
rule, less than the corresponding displacements of those statically deter-
minate systems from which they are formed. For example, as follows 
from the analysis of the work under load of the beams (Figure 8.5), 

2 1.    
 

 
 

Figure 8.5 

 
Other features of the distribution of forces and displacements in stati-

cally indeterminate systems will be explained in the subsequent parts of 
the chapter. 

 
8.2. Determining the Degree of Static Indeterminacy 

 
By the definition, the degree of static indeterminacy is equal to the 

number of redundant constraints. From the formula (1.1), which estab-
lishes quantitative relations between the number of disks degree of free-
dom and the number of constraints superimposed on them, it follows that 
the number of redundant constraints (Λ) will be equal to ,W    that 
is, calculated by the formula: 

 

0 2 3 3 ,L H R D                                   (8.1) 
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and if the disks are connected only by constraints of the first (single link) 
and second (hinge) types, then by the formula: 

 

0 2 3 .L H D                                       (8.2) 
 

As in the definition of W, both formulas can be used when none of 
the disks of the system is represented as a closed contour. 

If the outline of the frame is closed, it must be divided into several 
open ones and only then the formula (8.1) should be used.  

Hingeless closed contour is three times statically indeterminate. In-
deed, in order to turn the frame with the form of a closed contour (Figu-
re 8.6, a) into a statically determinate frame (Figure 8.6, b) it is possible 
to remove three constraints in the cross-section k. These three links 
transfer internal forces from one end of the member to the other. 

 

 
 

Figure 8.6 
 

If in the cross-section k the constraint will be removed, through which 
the bending moment is transferred from one part of the member to an-
other, i.e. set the hinge, we get twice statically indeterminate frame (Fi-
gure 8.6, c). 

Thus, the degree of static indeterminacy of the frame can be deter-
mined by the formula: 

 
3 ,K H                                           (8.3) 

 
where K  is the number of closed contours in the frame; 

H  is the number of simple hinges. 
Note that the frame shown in Figure 8.7 also represents a hingeless 

closed contour. The base, to which the frame is attached at points A and 
B, in this case, is considered as a disk connecting these points. 
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Here are some examples. Let us determine the degree of static inde-
terminacy for the frame shown in Figure 8.8. 

By the formula (8.2) we get:  
 

0 2 3 9 2 2 3 3 4L H D          . 
 

By the formula (8.3):  
 

3 3 2 2 4K H       . 
 

Closed contours are shown in Figure 8.8 by wavy line. 
 

       
 

Figure 8.7 
 

Figure 8.8 
 

When using formula (8.1) for the frame shown in Figure 8.9, we take 
into account that disks 1 and 2, as well as 2 and 3 are rigidly connected 
to each other. 

 

 
 

Figure 8.9 
 
The outlines of the discs are highlighted by wavy lines. The hinge at 

the point C is double one. 
 

0 2 3 3 7 2 4 3 2 3 5 6L H R D             . 
 

By the formula (8.3) we get: 
 

3 3 4 6 6K H       . 
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The partition of the frame (Figure 8.10) into individual disks will be 
accepted as shown in the figure. 

 

 
 

Figure 8.10 
 

Then we get: 6,D   2,H   the number of rigid (fixed) connections 
(nodes) 4.R   

By the formula (8.1):  
 

0 2 3 3 9 2 2 3 4 3 6 7L H R D             . 
 

By the formula (8.3): 
 

3 3 4 5 7K H       . 
 

In the previous expression it is accepted that 2,H   since there are 
two simple hinges on the scheme (each of them connects only two disks). 

In the last expression 5,H   since in addition to two hinges in the 
upper contour, two hinges in the lower left contour and one hinge in the 
lower right contour are taken into account. 

The degree of static indeterminacy defines the number of additional 
equations that need to be written to determine unknown forces. These 
unknowns are efforts in redundant constraints. 

 
8.3. Primary System and Primary Unknowns 

 

The sequence of actions for disclosing the static indeterminacy of a 
given system is as follows. 

In a given statically indeterminate system, redundant constraints are 
removed, and unknown forces are applied instead. The obtained system 
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is called the primary system of the force method, and unknown forces 
are called the primary unknowns of this method. They are designated 
with symbols ,iX  where 1, 2, ,i n   ( ).n    

In order to reduce the number of unknowns, experienced specialists 
use sometimes statically indeterminate primary systems. The number of 
unknowns (n) in this case will be less than the number of redundant con-
straints ( ). This calculation method requires additional calculations for 
statically indeterminable fragments included in the main primary system. 

Subsequently, by comparing the displacements of the given and the 
primary systems, equations are obtained for determining the primary un-
knowns. 

Let us explain some features of the choice of the primary system. 
First of all, we note that the primary system should be geometrically un-
changeable and immovable. For any statically indeterminate frame, se-
veral primary systems can be selected. Consider the following example. 
The degree of static indeterminacy of the frame shown in Figure 8.11, a, 
is three. Possible variants of the primary systems are shown in Figures 
8.11, b–c. In Figure 8.11, b it is shown that as the primary unknowns of 
the force method, the forces in the support connections of a given frame 
are taken. According to Figure 8.11, c the primary unknowns are 1,X  

3X  (reactions in support connections) and 2X  (interaction forces (mo-
ments) between the members adjacent to the hinge). The systems shown 
in Figures 8.11, d, e, cannot be selected as the primary ones, since they 
are instantly changeable. 

 

 
 

Figure 8.11 
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All subsequent calculations in the force method are associated with 
the primary system. Therefore, the complexity of the calculation will 
substantially depend on the successful choice of a variant of the primary 
system. Methods for selecting rational primary systems are outlined in 
Section 8.8. 

 
8.4. Canonical Equations  

 
Deformations of the given and the primary systems will be the same 

only if the displacements of the application points of the primary un-
knowns in their directions in the primary system are the same as in the 
given system, i.e., equal to zero.  

Indeed, for example (Figure 8.11, a–c), in the given system the dis-
placement in the direction of force 1X  or 3X  is equal to zero. The angle 

of mutual rotation of the cross-sections in the direction of unknown 2X  
(Figure 8.11, c) is equal to zero also. 

The displacements in the primary system in the directions of the  
primary unknowns depend on the external load acting on the system and 
the primary unknowns, so we can write that: 

 

 
 

 

1 1 2

2 1 2

1 2

, , , , 0;

, , , , 0;

, , , , 0.

n

n

n n

X X X F

X X X F

X X X F

 


  


   
  







                           (8.4) 

 

where  1, ,i i n    – is full displacement in the direction of the un-

known iX , that is, displacement caused by the unknowns 1 2, ,...,X X nX  
and external load .F  

The number n of such equations certainly corresponds to the number 
of primary unknowns. If we use the principle of independence of the ac-
tion of forces, then the i-th equation from system (8.4) can be written in 
the form that allows us to see the contribution of each force factor to the 
final result: 

 

1 2 ,i i i in iF                                   (8.5) 
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where 1 2, , ,i i in    are the displacements of the application point  
of the i-th primary unknown in its direction, caused by forces 

1 2, , , ;nX X X  

iF  are the displacement of the same point in the same direction, 
caused by an external load. 

The displacement in the direction of the i-th unknown, caused by 
force ,kX  can be represented as: 

 

,ik ik kX                                          (8.6) 
 

where ik  – is the displacement in the same direction caused by force 

1.kX   
Taking into account expressions (8.5) and (8.6), we write the system 

of equations (8.4) as follows: 
 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

0;

0;

0.

n n F

n n F

n n n nn n nF

X X X X

X X X X

X X X X

           
           
      
           






          (8.7) 

 

These equations are called the canonical equations of the force meth-
od for calculating the system on the action of an external load. The es-
sence of the i-th equation is that the displacement of the application point 
of the unknown iX  in its direction, caused by all unknowns and the ex-
ternal load, is zero. 

In the matrix-vector form, system (8.7) can be written more compactly: 
 

0,A X B 
 

                                        (8.8) 
 

where A  is matrix of coefficients at unknowns in the canonical equa-
tions (pliability matrix of the primary system): 

 

11 12 13 1

21 22 23 2

1 2 3

;

n

n

n n n nn

A

    
     
      
     






                        (8.9) 
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X


 is vector of unknowns: 
 

 1 2 3 ;T
nX X X X X


                             (8.10) 

 

B


 is vector of free terms of canonical equations (vector of the load 
displacements): 

 

 1 2 .T
F F nFB    


                              (8.11) 

 

The coefficients of the type ,ii  i.e., located on the main diagonal, are 

called the main ones (main displacements), and the coefficients ,ik   

if i k  – are called the secondary ones (secondary displacements).  
According to the reciprocity theorem ,ik ki    i.e., the matrix A  is 
symmetric. 

When calculating the statically indeterminate system on the thermal 
effect, the vector B


 in equation (8.8) has the form: 

 

 1 2 ,T
t t ntB    


                                (8.12) 

 

where it  is the displacement of the application point of the i-th un-
known in its direction, caused by a change in the temperature of the 
members. 

When calculating the system by the settlements of supports: 
 

 1 2 ,T
c c ncB    


                                (8.13) 

 

where ic  is the displacement in the direction of the i-th unknown caused 
by the settlements of supports. 

 
8.5. Determining Coefficients and Free Terms  

of Canonical Equations 
 

The coefficients and free terms of the canonical equations are calcu-
lated according to the rules of determining displacements described in 
Chapter 7. For the frame systems that experience predominantly bend-
ing deformations in non-automated computing (“manual” calculation), 
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we can take into account the influence on displacements of only bend-
ing moments. Therefore, displacements ik  and iF  are calculated by 
the formulas: 

 

,i k
ik

M M dx

EJ
    

 

,i F
iF

M M dx

EJ
    

 

where ,iM  kM  are bending moments diagrams caused by dimensionless 

forces, respectively 1iX   and 1;kX   

FM  is bending moments diagram caused by external load. 
So, for example, if for the frame (Figure 8.12, a) we accept the prima-

ry system according to the variant of Figure 8.12, b, when determining 
the displacement 21,  it is necessary to consider the state of the frame 

under the action 1 1X   (Figure 8.12, c) as load state, and the second 

state, corresponding to the action 2 1X   (Figure 8.12, d), as an auxiliary 
one. Then, after the construction of the bending moments diagram (Fi-
gures 8.12, f, g), you can use the well-known methods of calculating the 
Mohr integral of the form: 

 

2 1
21

M M dx

EJ
   . 

 

Displacement 1F  (Figure 8.12, e) is calculated using diagrams 1M  

(Figure 8.12, e) and FM  (Figure 8.12, h): 
 

1
1

F
F

M M dx

EJ
   . 

 
The matrix form for determining displacements is described in 

Section 7.10. 
Obviously, the values of the coefficients and free terms of the ca-

nonical equations are more accurate if in addition to bending moments 



223 

we take into account the longitudinal and shear forces in the frame 
elements. 

After determining the coefficients and free terms, the system of ca-
nonical equations can be solved in numerical form. 

 

 
 

Figure 8.12 
 

8.6. Constructing the Final Diagrams of the Internal Forces 
 

The solution of the system of canonical equations allows us to find 

the values of the primary unknowns. The final efforts   , ,S M Q N  in 
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the k-th cross-section of a given system are calculated by the expression, 
based on the principle of independence of the forces action: 

 

1 1 2 2k kF k k kn nS S S X S X S X     ,              (8.14) 
 

where kFS  is the force in the k-th section from the action of external 
load; 

kiS  is the force in k-th section from 1,iX   1, 2, , .i n   
In accordance with expression (8.14), the final diagrams of bending 

moments, shear and longitudinal forces are constructed: 
 

1 1 2 2F n nM M M X M X M X     ,             (8.15) 
 

1 1 2 2F n nQ Q Q X Q X Q X     , 
 

1 1 2 2F n nN N N X N X N X     . 
 

Constructing diagrams Q  and N  using the above formulas is not al-

ways convenient. A simpler way of constructing the diagram Q  is based 

on the use of differential dependence .
dM

Q
dx

  

To use this dependence we obtain an analytical expression for deter-
mining the bending moment in the cross-section of a frame member. 
Consider such a member as a beam on two supports. Suppose that the 
beam at its span is loaded as shown in Figure 8.13, a. Both external  
moments at the supports (left (l) and right (r)) cause in the cross-sections 
of the beam over the supports the positive bending moments equel to 

lM  and .rM  
Having constructed for this beam the moment diagrams caused by 

span load (Figure 8.13, b) and supporting moments (Figure 8.13, c, d), 
we will determine, based on the principle of independence of the action 
of forces, the final ordinate in the cross-section k on the diagram M as 
the sum of its components : 

 

F l r
l x x

M M M M
l l


   .                         (8.16) 
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Taking the first derivative of the expression (8.16), we obtain the 
formula for determining the shear force in the same cross-section: 

 

r l
F

M M
Q Q

l


  .                               (8.17) 

 

 
 

Figure 8.13 
 

8.7. Calculation Algorithm. Calculation Check 
 

The process of calculating statically indeterminate frames by the 
force method includes the following steps. 

1. Determination of the degree of static indeterminacy of the system. 
2. Selection of the primary system. 
3. The recording of the system of canonical equations in the general 

form. 
4. Construction of the diagrams of the internal forces in the primary 

system due to the external load and the unit values of the primary un-
knowns. 
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5. Calculation of the coefficients at the unknown and free terms of the 
canonical equations. 

6. Recording the system of canonical equations in numerical form 
and solving it. 

7. Construction of the final diagram of bending moments. 
8. Construction of the final diagrams of Q  and .N  
In order not to be mistaken during the calculation, the calculations at 

each step of the algorithm should be checked. For this, of course, it is 
necessary to understand thoroughly the essence of the operations per-
formed and correctly use the knowledge accumulated during the study-
ing the course of structural mechanics. 

Let us explain the features of checking the accuracy of the calculation 
at individual steps of the algorithm. 

First of all, we make a remark on the question of choosing the prima-
ry system. For all possible variants of the primary system, a kinematic 
analysis of them should be performed in the sequence recommended in 
Chapter 1. Particular attention should be paid to the analysis of the struc-
ture of the system and its verification for instantaneous changeability. 

At the step of constructing the efforts diagrams in the primary system, 
as a rule, the static method is used. To check the diagrams, the condi-
tions of equilibrium of fragments of the design scheme, in particular, 
frame nodes, are used the most. 

Verification of the calculation of the coefficients at the unknown and 
free terms of the canonical equations is carried out using the total dia-
gram of the unit moments ,sM  construct according to the rule: 

 

1 2s nM M M M    .                          (8.18) 
 

If we "multiply" diagram iM  and diagram ,sM  we get: 
 

 1 2

1 2

1 2 , 1, 2, , ,

i ni s
is

i i i n

i i in ik

M M M M dxM M dx

EJ EJ
M M dx M M dx M M dx

EJ EJ EJ
k n

  
   

    

         

  

    







 

    (8.19) 
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i.e., the sum of the coefficients for unknowns in the i-th  1, 2, ,i n   

equation should be equal .is  Such a check is called line by line. 
Instead of “multiplying” each unit moment diagram by total diagram 
,sM  in practice, we can “multiply” sM  by .sM  Using (8.19), it is easy 

to show that: 
 

1 1

n n
s s

ss ik
i k

M M dx

EJ  
      ,                       (8.20) 

 

i.e. ss  equal to the sum of all the coefficients of the canonical equa-
tions.  

This check is called universal. 
Similarly, verification of the calculation of free terms is performed: 

 

1
.

n
s F

sF iF
i

M M dx

EJ 
                             (8.21) 

 

The sum of all free terms of the canonical equations is sF . 
It should be noted that performing the checks of coefficients and free 

terms mentioned here is not always a guarantee of correct calculations. 
In the course of determining ,ik  iF  and ,ss  sF  in some step, the 
same mistake can be made and, as a result, it will be unnoticed. There-
fore, we recall once again that the basis of correct calculations at this 
step is knowledge and the ability to apply methods for calculating the 
Mohr integrals correctly. 

To verify the final diagrams of bending moments static and kinematic 
checks are used. The static check of the diagram “M” carries out by 
checking the equilibrium of the frame nodes. With its help, only errors 
that can be made during the step of constructing the bending moment dia-
gram using the formula (8.15) are detected.  

The main verification is kinematic one (its other names: deformation 
check, check of displacements). The displacement of the application 
point of the i-th primary unknown in its direction in the given system 
should be equal to zero. Therefore, using the general rule for determining 
displacements, we obtain: 

0iM M dx

EJ
 .                                 (8.22) 
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In this case, it is clear that the sum of the displacements along the di-
rections of all the primary unknowns is also equal to zero. Consequently, 

 

0,sM M dx

EJ
                                  (8.23) 

 

i.e., the result of “multiplying” the total unit diagram sM  by the final 
diagram of the moments must be equal to zero. 

The static check of the diagrams Q  and N  consists in checking the 
equilibrium of the part of the frame cut off from the support connections. 

 

E x a m p l e. Construct the diagrams ,M  Q  and N  for the frame 
shown in Figure 8.14, a. 

The given frame is twice statically indeterminate. The primary system 
and the primary unknowns are shown in Figure 8.14, b. The system of 
canonical equations has the form: 

 

11 1 12 2 1

21 1 22 2 2

0;

0.
F

F

X X

X X

 
 

    
    

 

 

Diagrams of bending moments in the primary system caused by the ac-
tion of 1 1,X   2 1X   and external load are shown in Figures 8.14, c, d, e. 

We determine the coefficients at unknowns and the free terms in the 
canonical equations: 

 

11
1 1 2 1 2 1 1 1 2 203

1 1 1 3 3 3 3 6 3 3 3 3
2 2 3 2 3 2 3 3EJ EJ EJ EJ

            
 

; 

 

22
1 1 1 2 144

6 4 6 6 6 6
2 2 3EJ EJ EJ

       ; 

 

12 21
1 1 66

6 4 1 3 6 3
2EJ EJ EJ

            ; 

 

 1
1 6 3160

320 4 1 320 3 4 125 3 20 3
2 6F EJ EJ EJ

            ; 

 

 2
1 6 7260

320 4 6 320 6 4 125 3
2 6F EJ EJ EJ

             . 
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Figure 8.14 (begining) 
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Figure 8.14 (ending) 
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To check the coefficients and free terms, a total diagram of the unit 
moments is constructed (Figure 8.14, e). Using the formula (8.20), we 
obtain: 

 

4
( 2 3 3 2 7 7 3 7 2)

6 2

6 1 1 2 239
(3 3 3 3) 3 3 3 .

6 2 3 3

s s E J

E J E J E J

          


      
 

 

Indeed: 
 

11 12 21 22
203 66 66 144 239

3 3EJ EJ EJ EJ EJ
            . 

 

By the formula (8.21) we have: 
 

 1 6 4100
320 4 5 320 3 20 3

2 6sF EJ EJ EJ
            , 

 

that is equal to 1 2
3160 7260 4100

F F EJ EJ EJ
       . 

 

We record the system of equations in numerical form: 
 

1 2

1 2

203 66 3160
0;

3
66 144 7260

0.

X X
EJ EJ EJ

X X
EJ EJ EJ

   

   


 

 

Having solved this system of equations, we find: 
 

1 4.477X  kN;        2 52.468X  kN. 
 

To construct the final moment diagrams, we use the formula (8.15). 
The diagrams 1 1M X  and 2 2M X  are shown in Figures 8.14, g, h, and the 
final diagram M  is shown in Figure 8.14, i. Its static verification is per-
formed (The reader is advised to conduct its own verification). We per-
form a kinematic check: 



232 

 

 

4
2 3 18.62 2 7 0.71 3 0.71 7 18.62

6 2
6 1 1 2

3 18.62 3 33.43 3 3 13.43
6 2 3

140.57 140.55 0.02
.

sM M dx

EJ EJ

EJ EJ

EJ EJ EJ

           


       

    



 

 
The relative error of the calculations is: 

 
0.02

100 0.01 %
140.55


     

 
which is less than the acceptable value. 

The diagram Q  (Figure 8.14, k) is constructed in accordance with the 

diagram .M  Once again, we note that a simpler way of constructing is 
based on dependency 

 

dM
Q

dx
 . 

 
We use the formula (8.17). 
Considering the element 2–3 as a simple beam loaded with a uni-

formly distributed load, we construct a diagram of the shear forces (dia-
gram of the shear forces for the beam). It is shown in Figure 8.14, l. 

Given the distribution of moments on this element (Figure 8.14, i)  
using the formula (8.17), we find that in the cross-section adjacent to the 
node 2: 

 
 

2
33.43 18.62

30 27.53
6

Q
  

    kN, 

 
and in the cross-section adjacent to the node 3: 
 

 
3

33.43 18.62
30 32.47

6
Q

  
      kN. 
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The Q  diagram for the cantilever 3–4 is constructed as for a statical-
ly determinable fragment of a frame. However, in this case we can also 
use the formula (8.17), if you consider section 3–4 as a beam with two 
supports (Figure 8.14, m). 

Then in the cross-section adjacent to the node 3: 
 

 
3

0 20
10 20

2
Q

 
    kN, 

 
and in the cross-section adjacent to the node 4: 

 
 

4
0 20

10 0
2

Q
 

    . 

 
For element 1–2 we get: 

 
 

1
18.62 0.71

0 4.48
4

Q
  

     kN, 

 

 
2

18.62 0.71
0 4.48

4
Q

  
     kN. 

 

Mind that tg .
dM

dx
   The diagram of bending moments is usially 

constructed on the stretched fibers of the element. For horizontal ele-
ments, the positive ordinates of the bending moments must be located 
below the axis of the element. Therefore, the sign of the transverse force 
in a given cross-section “k” of the horizontal bar can be determined as 
follows. Drawing a tangent to the line bounding the diagram ,M  at a 
point, corresponding to the position of the cross-section k  (Figure 8.14, n), 
it is necessary to find the intersection point of this tangent and the axis of 
the element (point ).O  

If the axis of the element must be rotated around the point O until it 
coincides with the tangent in the shortest way clockwise, then the shear 
(transverse) force in the cross-section k  will be positive  0 .Q   When 
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the axis of the element moves anticlockwise, then the shear force in the 
cross-section will be negative ( 0).Q   

On the linear zones of the diagram of bending moments, the posi-
tion of the tangent coincides with the line bounding the diagram. 
The shear force along the entire length of this section will be con-
stant. For the element 3–5  
 

13.43
4.48

3
Q     kN, 

 

and for the element 1–2  
 

18.62 0.71
4.48

4
Q


     kN. 

 
After determining the shear forces in the frame elements the longitu-

dinal forces N  are determined from the equilibrium equations of the 
nodes. The calculations begin with a node in which the elements with no 
more than two unknown forces are joined, and then, sequentially cutting 
out the nodes, determine the efforts in all other bars. The equilibrium 
equations are written as the sum of the projections of all the forces (both 
internal and external forces applied to the nodes, if any) on the vertical 
and horizontal axes. In the presence of inclined bars, if the calculations 
may be simplified, the forces projections can be performed to the axes 
perpendicular to the bars directions. 

Composing equations for node 2 (Figure 8.14, o) 0,X   0,Y   

we find 2 3 4.48N     kN, 1 2 27.53N     kN. 

From the equation 0Y   for node 3 (Figure 8.14, p) we get 

3 5 52.47N     kN. 

The equation 0X   for node 3 is a test one. The diagram N  is 
shown in Figure 8.14, p. 

For carrying out a static check of the diagrams Q  and N  we cut off 
the frame from the support connections, load it by a given load and shear 
and longitudinal forces in the cross-sections separating the rods from the 
support connections (Figure 8.14, c). Composing the equations 0,X   

0Y   and 0,М   we make sure that the frame is in equilibrium. 
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8.8. The Concept of Rational Primary System  
and Methods of Its Choice 

 

A rational primary system is such a system for which in the canonical 
equations greatest possible number of secondary coefficients is zero.  
At the same time, it is very important to set zero coefficients only on the 
basis of a visual analysis of the outline of the force diagrams, without 
spending time on their numerical determination. Zeroing secondary  
coefficients leads to significant simplifications in the calculation. 

If some coefficient ik  is equal to zero, the corresponding diagrams 

iM  and kM  are usually called mutually orthogonal. An analogy with 
the scalar product of mutually orthogonal vectors is used. 

The most commonly used methods for obtaining rational primary sys-
tems include: using the symmetry of the system, grouping unknowns, 
transforming of the load, breaking up multi-span frames. 

 

1. Using the symmetry of the system. The primary system for a 
frame which has a symmetric geometric dimensions and symmetric ri-
gidity of the elements should be taken symmetrical. If the primary un-
knowns can be positioned on the axis of symmetry, then some of them 
will be symmetric, and the other – inversely symmetric (or skew-
symmetric). Due to the action of a symmetrical load on the symmetrical 
frame, the distribution of forces in its elements will be symmetric, and 
vice versa: inverse-symmetrical loading of the symmetrical frame causes 
inverse-symmetrical forces in its elements. Therefore, the diagrams of 
bending moments in the primary system will be either symmetrical or 
inversely-symmetrical. Symmetrical and inverse-symmetrical diagrams 
are mutually orthogonal. 

For example, taking for the frame (Figure 8.15, a) the primary system 
shown in Figure 8.15, b, we obtain symmetrical diagrams 1M , 2M , 4M  

(Figures 8.15, c, d, f) and inverse-symmetrical 3M  (Figure 8.15, e). 

Therefore, the coefficients 13,  31,  23,  32 ,  34 ,  43  are equal  
to zero. 

Crossing out in the system of equations (the reader should write them 
down) the terms including the listed coefficients, we see that it has de-
composed into a subsystem containing only symmetrical unknowns and 
one equation with inverse-symmetrical unknown. 
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Figure 8.15 
 

It is easy, obviously, to extend the above reasoning to examples of 
frames with a large number of unknowns. 

 
2. Groupings of the unknown. In many cases, the primary un-

knowns cannot be positioned on the axis of symmetry. So, for the frame 
shown in Figure 8.16, a, the number of redundant constraints is six. The 
symmetric primary system can be adopted according to the variant 
shown in Figure 8.16, b. However, in this case, when loading it with 
forces 1iX   none of the diagrams of bending moments will turn out to 
be symmetrical or inversely-symmetrical, which means that all second-
ary coefficients will be nonzero. 

In order to obtain symmetrical and invers-symmetrical force plots, it 
is necessary to introduce new ones (we will denote them ),iZ  which are 

groups of forces, instead of traditional unknowns .iX  The transition 
from old unknowns to new ones, and vice versa, should be univocal.  

In Figure 8.16, c the same primary system with new unknowns is 
shown. Comparing the location of the unknowns in Figures 8.16, b, c, 
we find the rules for converting them: each pair of symmetrically located 
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unknowns iX  corresponds to the operation of addition or subtraction of 

symmetrical and inverse-symmetrical group unknowns iZ . 
 

 
 

Figure 8.16 
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In particular, 1 1 2,X Z Z   4 1 2 ,X Z Z   from where the expres-

sions for :Z   
 

1 4
1 2

X X
Z


 ,        1 4

2 2

X X
Z


 . 

 
The diagrams of efforts caused by group unknowns are shown in Fig-

ure 8.16, d–i. Due to the mutual orthogonality of symmetrical and in-
verse-symmetrical diagrams, the system of canonical equations decom-
poses into two independent ones: one of them will include only symmet-
rical unknowns 1,Z  3,Z  5,Z  and the other will include only inverse-

symmetrical 2,Z  4 ,Z  6.Z  
 
3. Transforming of the load. Further simplifications in the calcula-

tion of symmetric systems (Figure 8.17, a) are associated with the de-
composition of the load into symmetrical and inverse-symmetrical com-
ponents. 

Using the property of mutual orthogonality of the diagrams, it is easy 
to show that, when a symmetrical load is applied to a symmetrical sys-
tem, inverse-symmetrical unknowns become zero, and when a inverse-
symmetrical load acts, symmetrical unknowns turn out to be zero. In re-
lation to the design scheme of the frame shown in Figure 8.17, b, this 
means that it should be calculated as systems with three unknowns 1,X  

2 ,X  4X  (the primary system is shown in Figure 8.15, b), and the frame 
calculation for the action of inverse-symmetrical load (Figure 8.17, c)  
as systems with one unknown 3X . 

 

 
 

Figure 8.17 
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4. Breaking up multi-span frames. This method is used for both 
symmetrical and asymmetrical frames. Less computational work to de-
fine ,iк  will be if the diagrams of the internal forces in the primary sys-
tem extend to small fragments of the frame, i. e., they are “localized” in 
the vicinity of the load. 

For a frame (Figure 8.18, a) with four unknowns in Figures 8.18, b, c, 
two variants of the primary system are presented. Analyzing the distri-
bution of bending moments due to 1iX   in the frame shown in Figu- 

re 8.18, b, we can verify that none of the coefficients iк  is equal to zero. 
In the system shown in Figure 8.18, c, bending moment diagrams oc-

cur only on columns directly perceiving the action 1.iX   Therefore, 

13 31 0,     14 41 0,     24 42 0,     and the primary system is 
rational. 

 

 
 

Figure 8.18 
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8.9. Determining Displacements  
in Statically Indeterminate Systems 

 
To determine the displacements using the Mohr formula, described in 

section 7.6, it is necessary to construct in the system the bending mo-
ment diagrams caused by the given loading  (Figure 8.19, a) and the aux-
iliary loading (Figure 8.19, b). Then the required displacement will be 
calculated by the formula (8.24): 

 

.k
kF

M M dx

EJ
                                   (8.24) 

 

However, this method of calculation is not entirely convenient, since 
it will be necessary to calculate the statically indeterminate system twice. 

A simpler calculation method can be obtained from the following rea-
soning. If you load the primary system with a given load and primary 
unknowns, which have been determined from the canonical equations, 
then the diagram of bending moment in this statically determinate sys-
tem (Figure 8.19, c) will completely coincide with the final moment dia-
gram (Figure 8.19, a). Therefore, if we consider the state of the frame  
in Figure 8.19, c as the initial one, then to determine the displacement  
of the point k it is possible to take a statically determinate system (Figu-
re 8.19, d) as an auxiliary state. In this case: 

 
0

,k
kF

M M dx

EJ
                                   (8.25) 

 

where 0
kM  – is the bending moments in a statically determinate system 

due to 1.kF   
Another method can be used to calculate the same displacement: the 

diagram of bending moments caused by given load can be constructed in 
the primary system, and the diagram caused by 1kF  – in a given stat-

ically indeterminate system. We will show this. 
Applying reciprocity theorem to the states of the frame shown in Fig-

ures 8.19, a, b, we get: 
 

,k kF FkF F                                      (8.26) 
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where 1;kF   
F  are the forces acting in the state a  (this force is a uniformly 

distributed load q  in Figure 8.19, a);  

Fk  is the displacement caused by 1kF   in the direction of force 
,F  (in this example, the area of the diagram of vertical displacements  

of the horizontal element). 
 

 
 

Figure 8.19 
 

Since the diagrams in the states a  (Figure 8.19, a) and c (Figu- 
re 8.19, c) coincide completely, the expression (8.26) is applicable to 
the frame states b (Figure 8.19, b) and c. In this case, as F, in Figu- 
re 8.19, c, the distributed load and the primary unknowns 1X  and 2X  
are accepted. But the work of the primary unknowns on the displace-
ments of the frame in the state b is equal to zero. Therefore: 

 

,kF FkF                                      (8.27) 
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i. e., the right side of the expression (8.27) is the work of external forces 
applied to the primary system. This work is done on the displacements of 
a statically indeterminate system in state .k  

Note that in the above explanations, there were no restrictions on the 
choice of the primary system. 

Writing the expression (8.27) through the work of bending moments, 
we obtain: 

 
0

k F
kF

M M dx

EJ
   ,                              (8.28) 

 

where 0
FM  is the bending moments diagram in the primary system (Fi-

gure 8.19, e). 
Thus, when determining displacements in statically indeterminate sys-

tems, one of the “multiplied” diagrams can be built in a given statically 
indeterminate system, and the second – in any statically determinate one 
obtained from a given system. 

Let us turn to the calculations. In Figure 8.20, a diagram of bending 
moments in a statically indeterminate frame caused by a given load is 
shown, and in Figure 8.20, b – diagram of bending moments in the same 
frame caused by 1.kF   By the formula (8.24) we get: 

 

2 2 2 2

2 2 2 2

2 4
2

15 13 15 13
2 2

24 176 22 176 44 176 44 176 22

3 13 13 3
2 2

24 176 11 176 44 176 11 176 44

3 3 7 1
4  м.

6 176 11 352 88 1408

k
kF

M M dx

EJ

l l ql l ql l ql l ql

EJ

l l ql l ql l ql l ql

EJ

l l ql l ql
ql

EJ EJ

  

 
      

 
 

     
 
 

    
 



 

 
In Figure 8.20, c the diagram of moments in a statically determinate 

frame (primary system) caused by 1kF   is shown, and in Figure 8.20, d – 
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plot of moments in the primary system caused by a given load. By the 
formula (8.25) we get: 

 
0 2 2 4 1

2
24 4 22 4 44 1408

k
kF

M M dx l l ql l ql ql

EJ EJ EJ

 
       

 
  m. 

 

 
 

Figure 8.20 
 
According to the formula (8.28): 
 

0 2 41 2 1 3 1

3 8 2 176 1408
k F

kF
M M dx ql l ql

l
EJ EJ EJ

       m. 

 
It is clear that the calculations of displacements using formulas (8.25) 

or (8.28) are simpler than using the formula (8.24). 
 

8.10. Calculating Frames Subjected to Change of Temperature 
and to Settlement of Supports 

 
When calculating the frames subjected to the thermal effect, the ca-

nonical equations of the force method are recorded in the form: 
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11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

0;

0;

0.

n n t

n n t

n n n nn n nt

X X X X

X X X X

X X X X

           
           
      
           






 

 

To calculate the free terms of the equations, formula (7.12) is used. 
In statically determinate systems, there are not the efforts caused by 

the action of the temperature. Therefore, the final diagram of bending 
moments in a given frame is constructed by summing up unit diagrams 
of moments multiplied by found from the equations values of corre-
sponding unknowns: 

 

1 1 2 2 n nM M X M X M X    .                    (8.29) 
 

Kinematic check comes down to the verification of the frame dis-
placements in the direction of redundant constraints, i. e. checking the 
condition: 

 

1
0

n
s

it
i

MM dx

EJ 
    .                           (8.30) 

 

When calculating the frames subjected to the settlements of supports, 
the canonical equations are written in the form: 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

0;

0;

0.

n n c

n n c

n n n nn n nc

X X X X

X X X X

X X X X

           
           
      
           






 

 

The free terms of the equations are calculated, in the general case, by 
the formula (7.13). 

 

E x a m p l e. Construct diagrams ,M Q  and N  caused by the ac-
tion of temperature change in the frame (Figure 8.21, a). The height of 
the cross-section of the elements AC  and BD  equals to 1 0.3h  m, the  

element CD  equals to 2 0.4h   m. The coefficient of thermal linear  
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expansion of the material equals to 51.2 10    1/(C), the bendimg  
rigidity is 60EJ   МN·m2. 

 

 
 

Figures 8.21 
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The primary system in the initial and deformed states is shown in 
Figure 8.21, b. The coefficients of the canonical equations will be deter-
mined taking into account the influence of only bending moments. Using 
the diagrams 1M  and 2M  (Figures 8.21, e, g), we obtain: 

 

11 22 12
272 180 84

, ,
3EJ EJ EJ

       . 

 

For the calculating convenience of free terms t1  and t2  (the cor-

responding segments are shown in Figure 8.21, b) using formula (7.12), 
we write the used values of the calculating parameters in the Table 8.1. 

 
Table 8.1 

 

№ 
element 

h ,  
m 

t ,  
(C) 

t , 
(C) 

1
,M  

m2 
1
,N  

m 
2
,M  

m2 
2
,N  

m 
AC  0.3 –5 50 8 0 0 4 
CD  0.4 –5 50 24 6 18 0 
BD  0.3 –5 50 8 0 24 4 
 
Recall that in the calculations by formula (7.12) each term in it is as-

sumed to be positive in the case when the corresponding directions of the 
elements deformation caused by unit forces and thermal action coincide. 

 

1 11

50 50 50
5 6 8 24 8 5636.67 .

0.3 0.4 0.3

t N M
t

t
h


      

    
         

 
 

 

2 22

50 50
5 4 5 4 18 24 6250 .

0.4 0.3

t N M
t

t
h


      

  
          

 
. 

 
Following the calculation algorithm (section 8.7), we write the sys-

tem of canonical equations in numerical form: 
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1 2

1 2

272 84
5636.67 0;

3
84 180

6250.0 0.

X X
EJ EJ

X X
EJ EJ

    

    


 

 

Solving it, we find 1 52.8498X EJ   kN, 2 10.0590X EJ    kN. 
 

The static indeterminacy of the frame disclosed. There is not the dia-
gram of moments caused by the external exposure in the statically de-
terminate primary system subjected to the thermal effect.  

Therefore, we construct the final diagram of bending moments by the 
expression: 

 

1 1 2 2M M X M X  . 
 

This diagram is shown in Figure 8.21, h. Bending moments in the 
frame depend on the values of the rigidity of the elements, i. e., one of 
the general properties of statically indeterminate systems is confirmed 
(Section 8.1). In parentheses are the ordinates for the initial data accept-
ed in the example. 

We are performing a kinematic verification. The total diagram of unit 
moments sM  is shown in Figure 8.21, g. 

 

 

 



2

1

1 2
211.399 4 4

2 3

6
2 211.399 4 2 271.753 2 271.753 4 211.399 2

6 2
4

2 271.753 2 2 60.354 6 60.354 2 271.753 6
6

5636.67 6250.0 0.

S
it

i

M M EJ

EJ EJ

       

          


          

    

 

 

 

The condition (8.30) is satisfied. The diagrams Q  and N  are shown 
in Figures 8.21, i, k. 

 
E x a m p l e. Construct diagrams ,M Q  and N  in the frame sub-

jected to the settlements of supports indicated in Figure 8.22, a. It is as-
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sumed that the rigidity of the frame elements equal to 60EJ   МN·m2, 
and the settlements of supports equals to 1 2 0.01c c c    m. 

 

 
 

Figure 8.22 
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The given frame is twice statically indeterminate. Selecting the pri-
mary system of the force method (Figure 8.22, b), we write the canonical 
equations in the form: 

 

11 1 12 2 1

21 1 22 2 2

0;

0.
c

c

X X

X X

      
      

 

 

We will construct the unit moments diagrams (Figures 8.22, c, d) and 
calculate the coefficients of canonical equations: 

 

11
225

3EJ
  ,       22

16

3EJ
  ,        12

20

3EJ
  . 

 

Considering the distribution of reactions in the support constraints 
due to 1 1X   (Figure 8.22, c) and 2 1X   (Figure 8.22, d), according to 
the formula (7.13) we get: 

 

 1 1 1 2 1 21 2.5 2.5 3.5 ;c k kR c c c c c c           
 

 2 2 2 20.5 0.5 0.5 .c k kR c c c c         
 

The canonical equations, after simple transformations, get the follow-
ing form: 

 

1 2

1 2

225 20
3.5 0;

3 3
20 16

0.5 0.
3 3

X X cEJ

X X cEJ

   

  


 

 
Having solved them, we find: 
 

1 0.043125 ,X cEJ         2 0.039844 .X cEJ   
 

Since the displacements of the supports does not cause efforts in a 
statically determinate system the final diagram of the bending moments 
is constructed by the expression: 

 

1 1 2 2.M M X M X   
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It is shown in Figure 8.22, f. In parentheses there are the values of the 
ordinates of the moments for the accepted source data. Kinematic verifi-
cation, as when calculating the thermal effect, is reduced to verifying the 
fulfillment of the condition: 

 

0s
ic

MM dx

EJ
    . 

 

We will check it using the total unit diagram sM  (Figure 8.22, e): 
 

 

1 2 4
0.2156 5 5

2 3 6

2 0.2156 5 2 0.2953 7 0.2156 7 0.2953 5

3.5 0.5 0.

cEJ

EJ

c c

   
           

  

 

 
The check is performed. The diagrams Q  and N  are shown in Fi-

gures 8.22, g, h. 
 

8.11. Influence Line for Efforts 
 

To construct the influence line for any effort, it is necessary, first, us-
ing the well-known methods of structural mechanics, to obtain the de-
pendence (analytical or numerical) of this effort due to the position of 

the force 1F      ,S f x  and then, using this dependence, determine 

the ordinates of the influence line for all characteristic sections. 
If the methods of statics are used to determine the dependence 

 S f x  then the corresponding method of constructing the influence 

line is called static one. 
In statically indeterminate systems, the effort in the cross-section of 

the element is determined by the expression (8.14). If it is used to con-
struct influence lines mind, that the values of the primary unknowns iX  

and the value of the effort in the cross-section k  of the primary system 
change due to the moving load 1.F   Therefore, the expression (8.14) 
for constructing the influence line for the effort in the cross-section k  
should be rewritten in the form: 
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inf.line kS  = inf.line 0
kS  + 1kS ( inf.line 1X ) + 

(8.31) 
+ 2kS ( inf.line 2X ) + … + knS  (inf.line nX ),  

 

where inf.line 0
kS  is the influence line for effort S  in the cross-section 

k  of the primary system;  

kiS  is the effort in the cross-section k  of the primary system 

caused by 1iX   ( 1, 2, , ).i n   
We use this expression to construct the influence line for bending 

moment in the cross-section k of a once statically indeterminate beam 
(Figure 8.23, a). 

 

 
 

Figure 8.23 
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Having selected the primary system (Figure 8.23, b), we will con-
struct the diagram of the moments caused by the movable load (Figu- 
re 8.23, c) and caused by the unit unknowm 1 1X   (Figure 8.23, d). 
Then we determine: 

 
3

11 3

l

EJ
  ,        

 2

1
3

6F
x l x

EJ


   . 

 
From the canonical equation  
 

11 1 1 0FX     
 

we find: 

 2

1 3

3

2

x l x
X

l


 . 

 
It follows that the influence line for 1X  is described by a curve of the 

third degree relative to the abscissa x  of the moving load 1.F   It is 
shown in Figure 8.23, e. 

In statically determinate systems, influence lines for efforts have a 
rectilinear outline or piece-broken (a rectilinear outline on a limited 
length of the movement of force). Recall, for example, influence lines 
for support reactions in simple beams, influence lines for bending mo-
ments, etc. 

To construct influence line for bending moment ,kM  the expression 
(8.31) can be written in the form: 

 

inf.line kM  = inf.line 0
kM  + 1kM (inf.line 1X ).        (8.32) 

 

In this example 1 2k
l

M   (Figure 8.23, d). Inf.line 0
kM  is shown in 

Figure 8.24, b, and inf.line 1 1kM X  is shown in Figure 8.24, c. 

Summing up two last influence lines, we get inf.line kM  (Figure 
8.24, d).  
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Figure 8.24 
 

The described method of constructing influence line can be applied to 
systems with a small number of unknowns using the “manual” (non-
automated) method of calculating ordinates. 

For complex systems, including frames, it is difficult to obtain analyt-
ical dependences of the required factor on the coordinate of the load 

1,F   therefore, numerical methods of solution are used for them. Using 
computer programs that implement methods for calculating various sys-
tems, one can find the required effort caused by unit load in various 
characteristic cross-sections of the frame. 

Thus, in order to construct the influence line for an effort, it is neces-
sary to calculate the given system sequentially for several loadings by 
forces 1F  applaied in several characteristic points. Let us explain  
this approach to constructing of influence lines using the example of a 
two-span frame (Figure 8.25) all of whose elements have the same ben 
ding rigidity. 

Suppose that a force 1F  can move along elements 4–8 and 9–13. 
We construct influence line for bending moment in cross-section 6. 
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Figure 8.25 
 

We accept three intermediate cross-sections on each of the bars and 
assume that all the elements of the frame have longitudinal rigidity

.EA  Next, we perform the calculation of given frame subjected to 
the six unit loadings (force 1F   is applied in each intermediate cross-
section of elements 4–8 and 9–13). From the calculation results for each 
load position, we select the bending moment values in cross-section 6 
and build with they the influence line 6M  (Figure 8.25). 

The static method in the presented form is currently the main method 
for constructing of influence lines for efforts and displacements in bar 
and continuum systems. 

Such an approach to constructing influence lines for efforts (or other 
factors) is described in more detail in Section 9.11. 

Let us briefly explain the essence of the kinematic method of con-
structing influence lines for efforts in statically indeterminate frames. 

If for the given system having n redundant constraints, we take a stat-
ically indeterminate system with 1n   redundant constraints as the pri-
mary system, then the canonical equation of the force method for calcu-
lating the frame for the action of the force 1F   will take the form: 

 

   1 1
111 1 0n n

FX     .                               (8.33) 
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Since by the theorem on reciprocity of displacements    1 1
1 1 ,n n

F F
     

then: 
 

 

1
1

1 1
11

n
F
n

X





 


,                                     (8.34) 

 

where  1
11
n  is the displacement (in the system with 1n   unknowns) of 

the application point of force 1X  in its direction; it is calculated by 

“multiplying” the diagram  1
1

nM   by itself; 

 1
1

n
F
  is the displacement (in the same system) of application 

point of force 1,F   caused by force 1 1.X   
The load 1F   can take any position on the frame elements, there-

fore, 1F  determines the displacement of the frame elements from the 

force 1 1.X   

Thus, the expression (8.34) for constructing the influence line for 1X  
can be written as follows: 

 

inf.line
 

 

1
1

1 1
11

. n
F

n

diag
X






 


.                         (8.35) 

 

So, to construct an influence line for 1X  it is necessary to construct 

the displacements diagram caused by the load 1 1X   of the frame  
elements along which the force 1F   moves, and divide all its ordinates 
by 11( ).  

The outline of the influence line turns out to be similar to the dis-

placements diagram of the frame elements. The multiplier (
11

1



) is the 

similarity coefficient. This is the main advantage of the kinematic meth-
od. With its help it is easy to imagine the shape of the influence line for 
effort. For this, it is necessary to remove the constraint in which the re-
quired force arises and load the frame (or other system) by the appropri-
ate force 1 1.X   With sufficient engineering intuition, it is easy to draw 
a diagram of displacements, i. e. the shape of influence line. 
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To construct, for example, the influence line for kM  in the statically 
indeterminate beam (Figure 8.24, a), it is need to set a hinge in the cross-
section k  and load the beam with bending moments 1X  (Figure 8.26). 
The diagram of the vertical displacements of the beam points will be 
similar to inf. line .kM  

 

 
 

Figure 8.26 
 

To construct the influence line 6M  in the frame (Figure 8.25) we set 
the hinge in the 6-th cross-section and load the frame with bending mo-
ments 1 1X   (Figure 8.27). The diagram of the vertical displacements 
of the horisontal elements caused by the given unit moments will be sim-
ilar to the influence line 6M . The ordinates 1F  of the displacement  
diagram, if necessary, can be calculated according to the rules set out  
in section 8.9. 

 

 
 

Figure 8.27 
 



257 

THEME 9. DISPLACEMENT METHOD AND ITS APPLICATION 
TO PLANE FRAMES CALCULATION  

 
9.1. Degre of kinematic indeterminacy. Primary Unknowns 

 
The positions of the ends of the bar, which is part of a loaded frame 

or other structural system, fully characterize the bar deformed state. 
Moreover, if the bar adjoins the node rigidly, then the position of its end 
for a plane system is determined by three parameters: the angle of rota-
tion of the end section and two components of linear displacement, if the 
connection is articulated, then only by two components of linear dis-
placement. In bar systems, the corresponding displacements of the ends 
of several bars connected in one node are equal to each other, however, 
as a rule, they are unknown. Therefore, systems containing such nodes 
are called kinematically indeterminable. The total number of unknown 
node displacements is called the degree of kinematic indeterminacy of 
the system. For example, the frame shown in Figure 9.1 is four times 
kinematically indeterminable: the movement of node 2 is characterized 
by three components ( 1 2 3, ,Z Z Z ), node 3 – by one component ( 4Z ).  

Kinematically indeterminable systems are not only statically indeter-
minate. These, in the general case, include statically determinable systems. 

 

 
 

Figure 9.1 
 
For example, the console beam, fixed at one end (Figure 9.2), can be 

considered as twice kinematically indeterminate if we suppose that at the 
other end  there is a node without links. In turn the statically determinate 
frame (Figure 9.3) is four times kinematically indeterminate. 
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Figure 9.2 
 

Figure 9.3
 

If by any method it were possible to find the displacements of the 
terminal sections of the bar, then the subsequent task of determining the 
internal forces in its cross sections could be solved quite simply, since 
for linearly deformable systems there are single-valued relationships be-
tween the internal forces, displacements of the nodes and the load. 

It is with the help of the displacement method, the essence of which 
will be described below, that the displacements of the nodes are deter-
mined first as the primary unknowns of this calculation method. And 
only after that the internal forces in the bars are determined. On the con-
trary, in the force method internal forces were determined first, and then 
displacements. 

Earlier, in the first chapter, the main assumptions for a linearly de-
formable system were indicated. In addition to them, when calculating 
frames by the displacement method, the following assumptions are in-
troduced: 

1. The deformations of the bars caused by transverse forces are not 
taken into account. 

2. The influence of longitudinal deformations is alsow not taken into 
account (calculation of frames taking into account longitudinal defor-
mations will be considered in Section 9.12). 

3. The initial length of the straight bar is assumed to be equal to the 
length of the chord, tightening its ends after deformation. 

These assumptions can significantly reduce the number of primary 
unknowns of displacement method. So, for the frame (Figure 9.1), the 
movement of node 2 can already be characterized by only two compo-
nents: the angle of rotation 1Z  and horizontal displacement 2.Z  Since 
the longitudinal deformation of the bar 1–2 is not taken into account, 
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then the vertical displacement 3 0Z  . In a deformed state, the position of 
the node 2 should be shown on line 2–3 (the arc described by the radius 

1 2r l   from center 1 is replaced by a tangent to it at point 2). The hori-
zontal displacement of node 3, due to the third assumption, must be  
taken equal 2Z . Therefore, the frame in question is twice kinematically  
indeterminate. The deformed frame diagram and primary unknowns, 
modified in accordance with the accepted assumptions, are shown in 
Figure 9.4, a. 

 

 
 

Figure 9.4 
 

From the above reasoning for the image of the deformed state of the 
frame, it follows that the total number n of primary unknowns of the dis-
placement method is determined as the sum of the unknown rotation  
angles an  of the rigid nodes and independent linear displacements ln  of 
the all nodes, i.e. 

 
.a ln n n   

 
Number an  is the degree of angular mobility, and ln  – the degree of 

linear mobility of the nodes. Moreover, if the definition of an  is reduced 
to counting the number of rigid nodes, then to determine the degree of 
linear mobility ln , the given frame must be turned into a hinged-rod sys-
tem by introducing hinges into all rigid nodes, including supporting 
ones, and determine the degree of freedom W  for it. When turning the 
frame into a hinge-rod system, the statically determinate consoles can be 
discarded (the degree of linear mobility decreases). 
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For the frame under consideration (Figure 9.4, a) 1,an   and for the 

corresponding hinge-rod system (Figure 9.4, b) 1,W   that is 1.ln   
Kinematic analysis of the design scheme shows that nodes 2 and 3 pos-
sess mobility in the horizontal direction (it is shown by the arrows  ). 
Therefore, 1 1 2a ln n n     . 

For another frame (Figure 9.5, a) the degree of linear mobility of its 
nodes will be found using the hinge-rod system (Figure 9.5, b), for 
which 3.W   

 

 
 

Figure 9.5 
 

The independent directions of the nodes motions are shown in this 
figure by arrows. The total number of primary unknown displacements is

6 3 9.a ln n n      
 

9.2. Primary system 
 

Calculation of the frame by the method of displacements for a given 
loading will begin with the fact that we first accept the unknown dis-
placements of the nodes equal to zero. We fix this state of the frame, i.e. 
we fix all the nodes with unknown displacements using additional links 
that prevent the angular and linear movements of the nodes. Obviously, 
the number of additional angular links will be equal an , and the number 

of linear ones – ln . 
The links that prevent angular movements are the so-called floating 

rigid supports. They do not allow rigid nodes to rotate, while the linear 
mobility of the nodes is not limited. In such links, the only kind of reac-
tions possible is the moment. On the design diagrams of the frames, they 
are represented by shaded squares. Linear links must be set in the direc-
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tions of possible independent linear displacements of nodes. The system 
thus obtained is called the primary system of the displacement method. 

As an example, the Figure 9.6, a shows the primary system of the 
displacement method for the frame shown in Figure 9.4, a. The Figu- 
re 9.6, b contains the primary system for the frame shown in Figure 9.5, a. 

The nodes displacements of the primary system are known: they are 
equal to zero. Therefore, the primary system can be called kinematically 
determinate. 

An analysis of the structural interaction of the primary system ele-
ments (Figure 9.6) shows that the primary system of the displacement 
method consists of single-span independent beams with hinged and/or 
absolutely rigid supports at the ends. 

 

 
 

Figure 9.6 
 

When transferring any of the beams that make up the primary system 
into a state corresponding to its deformed position in a given frame under 
load (Figure 9.7), internal forces arise in it. In accordance with the princi-
ple of independence of the forces action (principle of superposition), these 
efforts can be represented as the sum of the efforts caused by: 

1. The action of the load located on the beam (bar). 
2. By turning the left end of the bar (and the right end if the bar is 

pinched at both ends) by angle AZ  equal to the true value of the angle of 
rotation of node A . 

3. Mutual linear displacement AB  of the ends of the bar in a direc-
tion perpendicular to its axis. 

Supporting reactions arising in a statically indeterminable beam of con-
stant stiffness under various influences on it serve as auxiliary quantities in 
the calculation of frames by the displacement method. Their values can be 
found by the method of forces.  
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Figure 9.7 
 
E x a m p l e 1. Let us define the reactions in the support links and 

plot the bending moments diagram in the beam loaded with a uniformly 
distributed load (Figure 9.8, a). Having accepted the primary system of 
the force method in the form of a cantilever beam (Figure 9.8, b), we 
construct a unitare (Figure 9.8, c) and load (Figure 9.8, d) diagram of 
bending moments. 

 

 
 

Figure 9.8 
 

The canonical equation of the force method has the form 

 

11 1 1 0FX    , 
 

where  
 

3 2 4

11 1
1 1 3

,
3 3 2 4 8F
l ql ql

l l
EJ EJ EJ

       . 
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Therefore, 

1
1

11

3

8
FX ql


  


. 

 

The final diagram of bending moments, constructed by expression

1 1FM M M X  , is shown in Figure 9.8, d, and in Figure 9.8, f the val-
ues of the support reactions are shown. 

 

E x a m p l e 2. Consider a beam loaded with a concentrated force F  
(Figure 9.9, a). We construct the bending moments diagram FM  using 
the primary system from Example 1 (Figure 9.9, b). 

 

 
 

Figure 9.9 
 

We calculate the free term of the canonical equation 
 

 2 3
1

1 1 1
3 .

2 3 6F
F

F ul ul l ul u l u
EJ EJ

        
 

 

 

As 
3

11 ,
3

l

EJ
   then  2

1 3 .
2

F
X u u   
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From the equilibrium condition 0Y   it follows that  
 

 2
1 3 .

2A
F

R F X v v     

 
The final diagram of bending moments is shown in Figure 9.9, c. The 

values of the support reactions are given in Fugure. 9.9, d. 
 

E x a m p l e 3. Let us plot the bending moments diagram from the 
rotation of the clamped end of the beam at angle   (Figure 9.10, a). 

 

 
 

Figure 9.10 
 
We write the canonical equation of the force method in the form 

 

11 1 1 0.cX     
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The free term can be calculated by the expression 
 

1 1 ,c k kR c    
 

where 1kR  is the reactions in the link “k” of the primary system caused 

by force 1 1X   (Figure 9.10, b). 
 

 1 .c l l        

 
The same value 1c  can be obtained from the kinematic analysis of 

the disign scheme (Figure 9.10, c): displacement of point B  is opposite 
to the direction of force 1.X  

Then 
 

1
1 2

11

3
.c EJ

X
l


   


 

 
The bending moments diagram and the distribution of support reac-

tions are shown in Figure 9.10, d and e. 
 

E x a m p l e 4. Let us determine the efforts in the beam from the dis-
placement of the fixed support by amount   in the direction perpendicu-
lar to beam axis (Figure 9.11, a). 

As in example 3, the displacement 1c  can be found, using the for-
mula: 

 

1 1 ( 1 )c k kR c         . 
 

The support reaction at point B , equal to 1X , can be found as 
 

1
1 3

11

3c EJ
X

l


    


. 

 
Diagram M  and the values of the support reactions are shown in 

Figures 9.11, b, c. 
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Figure 9.11 
 
E x a m p l e 5. As an external influence on the beam, we consider 

thermal one (Figure 9.12, a). 
The canonical equation of the force method for calculating at the 

temperature change is 
 

11 1 1 0.tX     
 

Assuming 1 2,t t  we will depict the deformed state of the primary 
system in Figure 9.12, b. 

Value 1t  is found by the formula: 
 

2

1 2t M
t t l

h h

  
     , 

 
where 1 2t t t   . 

The solution of the canonical equation gives 
 

1
3

2

EJ t
X

h l


 . 
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The bending moments diagram is shown in Figure 9.12, c and sup-
ports reactions are shown in Figure 9.12, d.  

 

 
 

Figure 9.12 

 
E x a m p l e 6. We show the calculation of a twice statically indeter-

minate beam at rotation of fixed support A  by angle   (Figure 9.13, a). 
The primary system of the force method can be chosen as symmetric one 
(Figure. 9.13, b). The corresponding unit diagrams of bending moments 
are presented in Figures 9.13, c and d. The state of the primary system 
caused by the rotation of fixed support A  at angle   is shown in Figu- 

re 9.13, e. Since 12 21 0    , the canonical equations for determining 
the primary unknowns are represented in the form: 

 

11 1 1 0cX    , 
 

22 2 2 0cX    . 
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The coefficients at the unknown are: 
 

3

11 12

l

EJ
  ;        22 6

l

EJ
  . 

 
The free terms of the equations are: 

 

1 1 2 2c k k
l l

R c           
 

 , 

 

 2 2 1c k kR c        . 

 
Solving the equations gives 

 

1 2

6
,

EJ
X

l
           2 .

EJ
X

l
   

 
The bending moments diagram in the beam is represented in Figu- 

re 9.13, f. The support reactions are shown in Figure 9.13, g. 
 

 
 

Figure 9.13 
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The results of calculations of such beams for various types of loads 
are given in Table 9.1. This table will be used at calculating frames with 
the displacement method. 

 

Table 9.1 
 

№№ 
 

Beams schemes and  
bending moments diagrams 

Formulas for 
determining reactions 

1 2 3 

1 

А В
AM

  

1




AV

BV

l

MA
 

EJ
i

l
 ;   

3
A

i
M

l
 ; 

2

3
A B

i
V V

l
   

2 

А В
AM

  

 

AV BV

l
=A

A =

AM

1

1

 

3AM i ; 

3
A B

i
V V

l
   

3 

А В

  

 

2ql
8

l
q

MA

MA

VA VB

 

2

8A
ql

M  ; 

5

8AV ql ; 

3

8BV ql  

4 
  

 

ul vl
А ВF

MA

AM

VA VB

uvFl

l

 

 21
2A
Fl

M     ; 

 23
2A

F
V


   ; 

 
2

3
2B

Fu
V u   
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Table 9.1 (сontinuation) 
 

1 2 3 

5 

Uneven heating 
 

  

 

А В

AM

AV
VB

l

d t1
t2

MA

 

3

2A
EJ t

M
d


 ; 

3

2A B
EJ t

V V
dl


  ; 

  – linear expansion 
coefficient; 

1 2t t ;  1 2t t t    

6 

  

l

1

А В

MA

MA

VA

VB

MB

MB  

6
A B

i
M M

l
  ; 

2

12
A B

i
V V

l
   

7 

А В
AM

  

 

AV
BV

BM

l

 =A

=A

MA

MB

1

1

 

4AM i ; 

2BM i ; 

6
A B

i
V V

l
   

8 

А
В

AM
  

AV
BV

l
q

M B

ql 2

8
MA

M B

 

2

12A B
ql

M M  ; 

2A B
ql

V V   
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Table 9.1 (сontinuation) 
 

1 2 3 

9 
  

ul vl
l

А

MA

MA M B

M B

ВF

uvFl

VA VB

 

2
AM u Fl  ; 

2
BM u Fl  ; 

 2 1 2AV u F   ; 

 2 1 2BV u v F   

10 

Uneven heating 
 

А В
AM

MA

MB

 BM

t2
t1d

l A B
i t l

M M
d


  ; 

0A BV V  ; 

  – linear expansion 
coefficient; 

1 2t t ; 1 2t t t    

11 

В

  

BQ

BM


1

  

l

AV

MA

MB

А

MA

6
A B

i
M M

l
  ; 

2

12
A B

i
V Q

l
   

12 

В

  

l

MB

 BM

  

A =

l

VA

=A

MA

1

1
MA

А
A BM M i  ; 

0A BV V   
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Table 9.1 (ending) 
 

1 2 3 

13 

В

  

MB

q
l

AM
MB

AM
А

VA

 

2

3A
ql

M  ; 

2

6B
ql

M  ; 

AV ql ;  0BV   

14 

ul vl
F

 BM

В

l

MA

M B

А

AM AV

 

 2
2A
Fl

M u u  ; 

2

2B
Fl

M u ; 

AV F ;  0BV   

15 
В

 

MB
d t1

l

t2

MA MB

MA

A

 

A B
i t l

M M
d


  ; 

0A BV V  ; 

  – linear expansion 
coefficient; 

1 2t t ; 1 2t t t    

 
9.3. Canonical Equations 

 
The forces in the elements of the primary system change when it is 

transfered into a position corresponding to the deformed position of the 
given system. From the given effect reactions arise in additional links of 
the primary system. If displacements equal to the displacements in the 
corresponding directions of the given system are given each additional 
angular and linear link, then the reactions in the additional links must be 
equal to zero.  

Consequently, reactions in the additional links are functions of nodal 
displacements and loads, and the condition of static equivalence of the 
primary and given systems is reduced to equations of the form 
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 1 2, , , , 0 , 1, ,i nR Z Z Z F i n                       (9.1) 
 

where iR  is the complete reaction in the i -th additional link caused by 
displacements and load. 

The number of such equations is naturally equal to the total number 
of displacement method unknowns. 

Based on the principle of independence of the action of forces, func-
tional dependence (9.1) can be represented as 

 

1 2 0i i i in iFR R R R R      ,                      (9.2) 
 

where ikR  is the reaction in link i caused by the true value of the dis-

placement of link  1, ;k k n  iFR is the reaction due to load. 

Value ikR  can be write in the form 
 

ik ik kR r Z ,                                       (9.3) 
 

where ikr  is the reaction in link i caused by the unit value of the dis-

placement of link k  ( 1kZ  ); kZ  is a true offset value in the direction 

of link .k  
Substituting (9.3) into equation (9.2) and accepting 1, 2, , ,i n   we 

obtain the following system of linear equations: 
 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

0,

0,

. . . . . .

0.

n n F

n n F

n n nn n nF

r Z r Z r Z R

r Z r Z r Z R

r Z r Z r Z R

     
     


     






            (9.4) 

 
These equations are called the canonical equations of the displace-

ment method. As follows from the previous reasoning, the physical 
meaning of i-th equation is that the total reaction in this additional link 
caused by displacements 1 2, , , nZ Z Z  and a given external load has  
to be zero.  
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Coefficients (reactions) 11 22, , , nnr r r  located on the main diagonal 

are called the main reactions; coefficients (reactions) ( )ikr i k  are called 

secondary, and free terms 1 2, , ,F F nFR R R  are called load reactions. 
When the structure is exposed to temperature changes, the free terms 

of the equations are replaced by 1 2, , , ,t t ntR R R  and when there are 

support shifts – by 1 2, , , .c c ncR R R  
When determining the reaction in i-th additional link, its positive di-

rection should coincide with the positive direction of displacement iZ  
adopted in the primary system. 

In the matrix notation, the equations (9.4) have the form: 
 

0FR Z R  ,                                       (9.5) 
where 

11 12 1

21 22 2

1 2

. . . .

n

n

n n nn

r r r

r r r
R

r r r

 
 
 
 
 
 






 

 

is matrix of coefficients of canonical equations (system rigidity matrix in 
the directions of additional links); 
 

 1 2, , , T
nZ Z Z Z   

 

is matrix (vector for one load option) of primary unknowns; 
 

 1 2, , , T
F F F nFR R R R   

 
is matrix (vector for one load option) of the free members of the canoni-
cal equations (load reactions). 
 

9.4. Static method for determining the coefficients  
and free terms of canonical equations 

 
Coefficients and free terms of canonical equations are reactions in 

additional links. To determine them, it is necessary to know the distribu-



275 

tion of forces in the primary system due to the unit displacements of the-
se links and due to the load. 

Plotting diagrams of bending moments from these effects are shown 
on the example of a two-span frame (Figure 9.14, a). 

The same figure also shows the possible deformed state of the frame, 
which allows you to visually determine the number of primary un-
knowns: one angular and the other linear. We confirm, however, deter-
mining the number of unknowns according to the general rules. The 
frame has one rigid node. As follows from the kinematic analysis of the 
hinge-rod system (Figure 9.14, b), the degree of linear mobility of its 
nodes is also equal to one. The possible direction of movement of the 
nodes in the figure is shown by the arrow  . The total number of  
unknowns is equal 1 1 2a ln n n     . The primary system is shown 
in Figure 9.14, c. 

 

 
 

Figure 9.14 
 

Plotting the bending moment diagrams is performed using the data in 
table 9.1. Diagram FM  (load diagram) and diagrams 1M , 2M  (unit 
diagrams) are shown in Figures 9.14, d, e, f.  

In addition, in Figures 9.14, e, f the dashed line shows the curved ax-
es of the bars, which allow you to set the position of the stretched fibers 
on each of them and correctly depict the plot of the moments. The same 
figures show the reactions in the additional links. Their directions are 
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accepted as positive (in the directions of the positive displacement of the 
links). Recall that in the designation of the reaction ,ikr  the first index 

 i  indicates the number of the link in which the reaction occurs, and the 

second  k  indicates the number of the displacement that caused this 

reaction. In the designation ,iFR  the second index  F  means that the 

cause of the reaction is load .F  
To determine the reactions by a static way equilibrium equations are 

used. In particular, since only a moment can occur in a floating support, to 
determine it, one should use the equation of equilibrium of the form

0.M   So, to determine 1 ,FR  we will show the internal forces acting 
on the node in the cut-out state (Figure 9.15, a), and draw up the equation: 

 
2 2

2 1
1 0,

8 8F
q l q l

R     

 

from which we find 
 

2 2
1 2

1 8 8F
q l q l

R   . 

 

 
 

Figure 9.15 
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The equilibrium equation for determination of the unit reaction 11r  
(Figure 9.15, b) can be written as follows: 

 

11
6 6 4

0
EJ EJ EJ

r
l l h

    . 

 

Therefore,  
 

11
12 4EJ EJ

r
l h

  . 

 
An equation also in the form of the sum of moments relative to the 

node (Figure 9.15, c)  
 

12 2

6
0

EJ
M r

h
    

 

is used to determine the unit reactive moment 12:r  
 

12 2

6EJ
r

h
  . 

 
Reactions in additional links that impede linear movements of nodes 

are determined from the equilibrium conditions of a frame fragment. All 
external and internal forces acting on the fragment, except the reaction to 
be calculated, must be known. 

For the example under consideration, when determining the reactions

2 21 22, ,
F

R r r , such fragments can be the frame diagrams shown in Fi-

gures 9.15, d, e, f. 
Writing down the corresponding conditions of equilibrium of forces 

shown in each of these figures, we obtain equations for determining un-
known reactions 

In particular, the load reaction 2FR  (Figure 9.15, d) is determined by 
the equation 

 

0X  :   2
11

0
16FR F F   ,   2

5
;

16FR F   
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the secondary unit reaction 21r  (Figure 9.15, e) by the equation: 
 

0,X        21 2

6
0,

EJ
r

h
        21 2

6
;

EJ
r

h
   

 
and the main unit reaction 22r  (Figure 9.15, f) by the equation: 
 

0,X        22 3 3

12 3
0,

EJ EJ
r

h h
         22 3

15EJ
r

h
 . 

 
9.5. Kinematic Method for Determining the Coefficients  

and Free Terms of Canonical Equations 
 

Consider some basic system of the method of displacements in unit 
states “ k ” and “ m ” (Figure 9.16, a, b). The work of the external forces 
of state “ k ” on the displacements of state “ m ” is: 

 
1.km mkW r   

 
It is known that the work of external forces kmW is equal (with a mi-

nus sign) to the work of internal forces. Therefore, expressing the work 
of internal forces through bending moments kM  in state " k " on the cor-

responding deformations mM dx

EJ
 of the frame in state " m ", we obtain: 

 

k m
mk

M M dx
r

EJ
  .                                (9.6) 

 
Calculation of integrals of the form 
 

k mM M dx

EJ  

 
reduces to numerical integration, in the simplest cases – to “multiplica-
tion” of the bending moments diagrams. 



279 

 
 

Figure 9.16 
 

Therefore, the coefficients of the canonical equations of the dis-
placement method can be calculated in the same way as the coefficients 
of the equations of the force method by “multiplying” the corresponding 
diagrams of bending moments. 
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Having determined the work of the external forces of state “ m ” on 
the displacements of state “ k ” we get: 

 
1.mk kmW r   

 
Based on the reciprocity theorem, we get: 

 
,km mkW W  

or 
.mk kmr r                                           (9.7) 

 
It is a formal record of the reaction reciprocity theorem (the first theo-

rem of J. Rayleigh (1842–1919)): the reaction in link “ m ” from the unit 
displacement of link “ k ” in its direction is equal to the reaction in the 
link “ k ” from the unit displacement of link “ k ” in its direction. 

Consider two more frame states. In the first state " k ", unit displace-
ment 1kZ   is specified (Figure 9.16, a). In the second state “ i ”, unit 

force 1iF   is given (Figure 9.16, c). 

Work of the external forces of state “ k ” on the displacements of state 
“ i ” (there are no movements of the nodes) is zero: 

 
0kiW  . 

 
Therefore, the work of internal forces is equal to zero too: 

 

0k iM M dx

EJ
 . 

 
However, the work of the external forces of state “ i ” on the dis-

placements of state “ k ” is: 
 

1 1ik ik kiW r      . 
 

By the reciprocity theorem we obtain: 
 

1 1 0.ik ki ik kiW W r        
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Consequently, 
 

ik kir    .                                          (9.8) 
 
Expression (9.8) is a formal notation of the theorem on reciprocity of 

reactions and displacements (second theorem of J. Rayleigh): the dis-
placement of the point of application of force 1iF   in its direction, 

caused by the unit displacement of link “ k ”, is numericly equal (with 
the opposite sign) to the reaction in link “ k ” due to unit force 1iF  . 

 

The dimensions of reactions and displacements in this expression are 
the same. They are installed like this: 

 
 

Dimension kir  = 

 

Dimension of the reaction in link " "

Dimension of  force " " 

k

F
 

 
 

 
Dimension ik  = 

 
Dimension of the displacement 
in the direction of  force " "

Dimension of the displacement 
in the direction of  link " "

F

k

 

 
 

To determine the free terms, we consider the primary system of the 
displacement method in state “ k ” and in state “ F ” (load state, Figu- 
re 9.16, d). 

On the basis of the reciprocity theorem, there is equality: 
 

kF FkW W . 
 
Revealing this equality, we obtain: 
 

1 0kF ikR F      . 
 
From the last equality it follows 

 

kF ikR F    . 
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To determine the displacement ik  (Figure 9.16, a) in a statically  
indeterminate system using the Mohr formula, as you know, one of two 
“multiplied” diagrams of bending moments can be constructed in a stati-
cally determinate system obtained from the given system. In this case,  
it is the primary system of the displacement method.  

Then, denoting the diagram of bending moments due to 1F   in a 

statically determinate system by 0ˆ
FM  (Figure 9.16, e), we obtain 

 
0ˆ

k F
ik

M M dx

EJ
   .                                 (9.9) 

 

If the external load is a group of forces, then 0ˆ
FM  is a bending mo-

ments diagram constructed in the primary system of the force method 
due to a generalized unit force corresponding to the nature of a given 
exposure. 

Substituting the value of ik  into the expression for ,kFR  we obtain: 
 

0ˆ
k F

kF
M M dx

R F
EJ

   . 

 
By introducing F  to the integrand and denoting 
 

0 0ˆ
F FM F M , 

 

we find: 
0

k F
kF

M M dx
R

EJ
  .                            (9.10) 

 
So, the calculation of the load reaction kFR is reduced to the calcula-

tion of the expression (9.10), in which: 

kM  is a unit diagram of bending moments constructed in the primary 
system of the displacement method;  

0
FM  is a diagram of bending moments from the given load, built in a 

statically determinate system, obtained either from the primary system of 
the displacement method with the mandatory rejection of link “k”, or 
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obtained from the given statically indeterminate system, i.e. constructed 
in the primary system of the force method . 

 
E x a m p l e. Let us determine by kinematic method the reactions 

12 1, Fr R  and 2FR  for the frame shown in Figure 9.14. 
 

1 2
12 2 2 2

4 6 2 6 6

6

M M dx h EJ EJ EJ EJ EJ
r

EJ EJ h hh h h

        
 . 

 

To determine 1 ,FR  we construct in a statically determinate system 
obtained from the primary system of the method of displacements (Fi-

gure 9.14, c) a diagram of the bending moments 0( )a
FM  (Figure 9.17, a). 

The index ( )a  in the designation 0( )a
FM corresponds to a variant of the 

primary system (Figure 9.17, a): 
 

 0
1

1

2 2 2 2
1 2 1 21 2 3 2 1 2 3 2

.
2 3 8 2 2 3 8 2 8 8

a
F

F
M M dx

R
EJ

q l EJ q l EJ q l q l
l l

EJ l EJ l

  

  
       

 


 

 

 
 

Figure 9.17 
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To determine 2 ,FR  we select a statically determinate system ob-
tained from the given system (Figure 9.14, a), and construct a diagram of 

the 0( )b
FM  (Figure 9.17, b): 

 
0( )

2
2 2

1 1 5 5
.

2 4 2 162

b
F

F
M M dx Fh h EJ

R F
EJ EJ h

       
 

  

 
9.6. Building and Checking Internal Forces Diagrams  

Due to External Loads 
 

Having solved the system of canonical equations (9.4), we find the 
values of the primary unknowns of the displacements method. To build 
the final diagram of bending moments, it is necessary to first build the 
adjusted unit diagrams i iM Z  (they are called “corrected" unit diagrams 
of moments). The final diagram M  of bending moments from an exter-
nal load in the given statically indeterminate system is constructed by 
summing the load diagram FM  with the “corrected" unit diagrams, i. e., 
the ordinate of the diagram M  in each concrete section “k” of the frame 
bar is calculated by the formula: 

 

1 1 2 2k kF k k kn nM M M Z M Z M Z     . 
 

The main verification of the correctness of the final diagram of ben-
ding moments M  in the displacement method is a static check, which, 
as is known, reduces to checking the equilibrium of moments in the 
frame nodes. 

In addition, as in the force method, a kinematic check can be applied to 
check the correctness of the final diagram :M  the result of “multiplying” 
each unit moments diagram (or total unit diagram) of the force method by 
the final moments diagram should be zero 

The diagram of transverse forces Q  is constructed, as in the method 
of forces, according to diagram M , and the diagram of the longitudinal 
forces N  is constructed according to diagramQ . Static check of dia-

grams Q  and N  is performed in the same way as in the force method 
(in the displacement method, static check refers to the main one). 
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E x a m p l e 1. Let us construct a diagram of bending moments in the 
frame shown in Figure 9.18, a. 

To reduce the number of unknowns, when calculating the degree of 
linear mobility of the frame nodes, the console, as a statically deter-
minate fragment, is discarded. Then the degree of freedom W of the 
hinge-rod system (Figure 9.18, b) will be equal to unity, that is 1ln  . 
The total number of the displacement method unknowns is equal

2 1 3a ln n n     . At Figure 9.18, c the primary system and the pos-
itive directions of the primary unknowns are shown, and Figure 9.18, d–
g shows the bending moments diagram in the primary system, due to 
load, and unit diagrams of bending moments. 

The system of canonical equations has the form: 
 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

0,

0,

0.

F

F

F

r Z r Z r Z R

r Z r Z r Z R

r Z r Z r Z R

    
    
    

 

 
We note some features of calculating the coefficients at the unknowns 

and free terms of the canonical equations. To determine coefficient 32r , 
we write the condition for the equilibrium of the fragment (Figure 9.18, h) 
of the design scheme taken from Figure 9.18, f: 

 

32 320; 0.24 0.375 0; 0.135X r EJ EJ r EJ      . 
 

Using the data (Figure 9.18, g), we can verify that the reciprocity of 
the reactions is observed: 23 32.r r  Indeed, from the condition of the 
equilibrium of moments in the node (Figure 9.18, i) it follows that 

 

23 230; 0.24 0.375 0; 0.135 .M r EJ EJ r EJ       
 

Free term 3FR  can be determined from the equilibrium equation for 
the fragment (Figure 9.18, j) obtained from (Figure 9.18, d): 

 

3 30; 15.0 0; 15.0.F FX R R      
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Figure 9.18 
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In numerical form, the system of canonical equations is written as  
follows: 

 

1 2 3

1 2 3

1 2 3

1
3.3 0.4 0.24 6.25 0,

1
0.4 2.8 0.135 68.75 0,

1
0.24 0.135 0.2835 15.0 0.

Z Z Z
EJ

Z Z Z
EJ

Z Z Z
EJ

    

    

    

 

 

Its solution is:  
 

1
1

6.905Z
EJ

   rad,   2
1

29.040Z
EJ

  rad,    3
1

72.584Z
EJ

  m. 

 

The final diagram of bending moments is shown in Figure 9.18, k. 
 
E x a m p l e 2. Let us construct a diagram of bending moments for 

the frame shown in Figure 9.19, a. 
To determine the degree of linear mobility of the nodes, we use a 

hinged-rod system (Figure 9.19, b). The total number of unknowns is 
equal 2 1 3a ln n n     . The primary system of the displacement 
method and the positive directions of the primary unknowns are shown 
in Figure 9.19, c. The load and unit diagrams of bending moments are 
shown in Figure 9.19, d,…,g. 

The system of canonical equations in numerical form has the form: 
 

1 2 3

1 2

1 3

2.6 0.8 0.375 38.0 0,

0.8 3.2 15.0 0,

0.375 0.234375 60.0 0.

EJ Z EJ Z EJ Z

EJ Z EJ Z

EJ Z EJ Z

    
   
    

 

 

Its solution is: 
 

1
1

72.361Z
EJ

  rad,      2
1

13.403Z
EJ

   rad,  

 

3
1

371.778Z
EJ

  m. 
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The final diagram of bending moments is shown in Figure 9.19, h. 
 

 
 

Figure 9.19 
 

9.7. Calculating Frames with Inclined Elements 
 
In frames with inclined elements, the displacement of the linear link 

of a node to a predetermined value, for example, equal to one causes lin-
ear displacements of other nodes, which depend not only on the given 
displacement, but also on the geometry of the frame (the location of its 
elements). Therefore, to build diagrams of bending moments in the pri-
mary system, it is necessary, first of all, to find the mutual displacements 



289 

of the ends of the bars forming the frame. The displacement values are 
found from the displacement analysis of the hinge-rod system corre-
sponding to the given frame. 

When building any unit diagram only one additional link is displaced 
by a distance equal to unity, the rest remain motionless. In this case the 
hinge-rod system is a kinematic mechanism with one degree of freedom. 
With a known displacement of one node, the displacements of the others 
can be determined from the movement diagram of the mechanism. Let us 
explain this with the following examples.  

Let us consider a frame with one inclined column (Figure 9.20, a). 
The degree of its kinematic indeterminacy is equal to 2n  . The link 

that impedes the linear movement of nodes we place perpendicular to the 
rod 2–3 (Figure 9.20, b). 

To determine the mutual displacements of the ends of the frame rods at 

1 1,Z   we give the hinged-rod system position 0–1 – 2 – 3, which is 
possible under the conditions of its fastening (Figure 9.20, c). The arcs 
described by points 1 and 2 when the rods rotate around the reference 
points 0 and 3 are replaced by their tangents in points 1 and 2. From the 
right triangle 2-k-2 it follows that the mutual displacement of the ends of 
rod 1–2 is cos  , of rod 0–1 is sin , of rod 2–3 is 1. 

The same displacement values are obtained from the displacement di-
agram (Figure 9.20, d). Let us explain its construction. 

The support nodes 0 and 3 are fixed. The corresponding point on the 
displacement diagram is called the pole. From this pole (point 0,3 (Fi-
gure 9.20, d)) we draw rays perpendicular to the rods 0–1 and 2–3, i.e., 
along the directions of possible movements of nodes 1 and 2. On the 
ray perpendicular to rod 2–3, at a distance equal to unity, point 2 will lie. 

To determine the position of point 1, it is necessary to draw a line 
from point 2 perpendicular to rod 1–2. Segments 1 – 2 and 1 – 0 in 
the displacement diagram are equal to the mutual displacements of the 
ends of rods 1–2 and 0–1 for 1 1Z  . 

 
E x a m p l e 1. Let us construct a diagram of bending moments for 

the frame shown in Figure 9.20, a. The rigidity in bending of all bars are 
assumed to be the same. Angle  =  / 3 rad. The length of bar 2–3 is 

2 3 8 / 3l   m. 
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Figure 9.20 
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To build unit diagram 1M  (Figure 9.20, e) we use the previously 
found values of the mutual linear displacements of the ends of the bars. 
Diagrams 2M and FM are shown in Figures 9.20, f, g. 

The coefficients and free terms of the canonical equations are deter-
mined by static or kinematic methods. We show, for example, the 
definition of 11r  and 1 :FR  

 
2
1

11
1 1 3 3 2 3 3

4
2 32 3 32

1 3 2 3 1 9 8 2 9
5 2 0.1629 .

2 50 3 50 2 32 3 322 3

M dx EJ EJ
r

EJ EJ

EJ EJ EJ EJ
EJ


      


           



 

 
The same value can be obtained by the static method from the equi-

librium equation of node 2 (Figure 9.20, h). We obtain the transverse and 
longitudinal forces in rod 1–2 from the equilibrium equation for node 1. 
The multiplier EJ  in the notation in the figure of the transverse and lon-
gitudinal forces is omitted. 

 
0n nF   , 

 

11
3 1

0.1218 0.0406 0.012 0.1629 .
2 2

r EJ EJ
 

      
 

 

 
To calculate 1FR  by the kinematic method, we use the diagram of 

bending moments 0
FM  (Figure 9.20, i), built in the primary system of 

the method of forces: 
 

0
1

1
1 2 3

12.5 5
3 100

1 1 2 3 3
40 1 4 2.41.

2 3 323

F
F

M M dx EJ
R

EJ EJ

EJ

        
         

  


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From the equilibrium equation 0cM   for frame fragment (Figu- 

re 9.20, j) we find the same value 1 .FR  
We write the canonical equations in numerical form. 

 

1 2

1 2

1
0.1629 0.2213 2.41 0,

1
0.2213 1.4660 12.50 0.

Z Z
EJ

Z Z
EJ

   

   


 

 
Their solution gives: 

 

1
1

4.0409Z
EJ

  m,      2
1

7.9168Z
EJ

   rad. 

 
The final diagram of bending moments (Figure 9.20, k) is obtained 

according to the formula: 
 

1 1 2 2.FM M M Z M Z    

 
E x a m p l e 2. Let us build diagrams of internal forces for the frame 

(Figure 9.21, a), assuming that the stiffnesses of all bars on bending are 
constant and the same. As in the previous examples, we do not take into 
account the longitudinal deformation of the bars ( EA ). 

The degree of kinematic indeterminacy of the frame is three. We se-
lect the main system (Figure 9.21, b) and build the load diagrams  
of bending moments MF (Figure 9.21, e) and unit diagrams of bending 
moments M1 and M2 from angular unknowns Z1 = 1 and Z2 = 1 (Figu- 
re 9.21, f, g).  

To build a unit diagram from linear displacement Z3 = 1, it is neces-
sary to determine the mutual displacements of the ends of the bars. 

First, a given system (Figure 9.21, a) is converted into a hinge-rod 
system (Figure 9.21, c). Then the hinge-rod system (Figure 9.21, c) re-
ceives an offset along the entered additional linear link by Z3 = 1. The 
nodes 3, 4, 5 are moved to a new position 3', 4', 5'. Next a displacement 
diagram is constructed (Figure 9.21, d). 
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Figure 9.21 
 
On this diagram the lengths of segments 1-4' and 2-5' are equal to 

one. It is the mutual displacement of the nodes of the rods 1–4 and 2–5 
(these vertical rods have different heights, but since they are parallel, the 
nodes 4 and 5 move horizontally into equal segments). Section 0–3' is 
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equal to the displacement of the node 3 in the direction perpendicular to 
the rod 0–3; mutual vertical displacement of the ends of the rod 3–4 is 
determined by the length of the segment 3'–4'. 

Unit diagram M3 is presented in Figure 9.21, h. 

Coefficient r33 of the canonical equation, as well as free term R3F, is 
conveniently calculated by the kinematic method. One of the possible 

variants of diagram 0
FM  for determining R3F is shown in Figure 9.21, i. 

After determining the coefficients and free terms, the system of ca-
nonical equations is written in the form: 

 

1 2 3

1 2 3

1 2 3

1
1.2155 0.25 0.167785 44.17 0,

1
0.25 1.30 0.193125 106.67 0,

1
0.167785 0.193125 0.194830 40.0 0.

Z Z Z
EJ

Z Z Z
EJ

Z Z Z
EJ

    

    

     

 

 

Its solution is: 
 

1
1

78.593Z
EJ

  rad,       2
1

66.389Z
EJ

   rad, 

3
1

207.182Z
EJ

  m. 

 
The final diagrams of the internal forces ,M Q  and N  are shown in 

Fiures 9.21, j, k, l.  
 

9.8. Using System Symmetry 
 

It is known that any load acting on a symmetric system (Figure 9.22, a) 
can be represented as the sum of symmetric and inverse-symmetric com-
ponents. 

The first of them corresponds to the symmetric form of deformation 
of the frame (Figure 9.22, b), and the second to the inverse-symmetric 
(Figure 9.22, c). Therefore, the rotation angles of the nodes of the given 
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frame (Figure 9.22, a) can be found as the sum or difference of symmet-
ric and inverse-symmetric unknowns: 

 

1 1 2,Z Z           2 1 2.Z Z    
 

 
 

Figure 9.22 
 

Similar relations hold for linear displacements. For example, for а 
frame (Figure 9.23, a) it is possible to calculate its linear displacements 
Δ1 and Δ2, using symmetric (Figure 9.23, b) and inverse-symmetric 
(Figure 9.23, c) loading, by the expressions: 

 

1 1 2,Z Z           2 1 2 ,Z Z    
 

and the rotation angles of the nodes as: 
 

1 3 4 ,Z Z            2 3 4.Z Z    
 
These relations show that the unknown movements of nodes Δ1, Δ2, 

φ1 and φ2 (“old” unknowns) can be expressed in terms of the “new” un-
knowns Z1, Z2, Z3, Z4, which are grouped displacements of symmetrical-
ly located nodes. Introduction to the calculation of new unknowns leads 
to significant simplifications in the calculation. Unit bending moments 
diagrams from grouped displacements are divided only into symmetric 
or inverse-symmetric ones. Such diagrams have the property of mutual 
orthogonality, and therefore the system of canonical equations splits into 
two independent subsystems of equations, one of which contains only 
symmetric unknowns, and the second – inverse symmetric. The de-
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scribed method for calculating frames is called the method of grouping 
unknown displacements. 

 

 
 

Figure 9.23 
 

Note that if there is a bar on the frame symmetry axis (its position co-
incides with the axis of symmetry), then the symmetric unknowns do not 
cause bending moments in it. Therefore, the result of “multiplying” the 
symmetric diagram by inverse-symmetric one will be zero. 

Coefficients and free terms in canonical equations are generalized re-
actions caused by the displacement of grouped (pair) unknowns. They 
are determined in a static or kinematic way. 

 
E x a m p l e 1. It is necessary to build the final diagram of bending 

moments in a three-span symmetrical frame (Figure 9.24, a), assuming 
the rigidity in bending of all the bars is equal to EJ. 

The degree of kinematic indeterminacy of the frame is a ln n n  
2 3 5   . The primary system and positive directions of grouped  

unknowns are shown in Figure 9.24, b. Unit diagrams of bending mo-
ments and the load diagram of bending moments are presented in Figu-
res 9.24, c–g. Diagrams 1M  and 3M  are symmetric, and diagrams 2,M  

4M  and 5M  are inversely symmetric. Due to their orthogonality, the 
system of five canonical equations of the displacement method is divided 
into two subsystems. One contains symmetric unknowns: 
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11 1 13 3 1

31 1 33 3 3

0,

0,
F

F

r Z r Z R

r Z r Z R

   
   

 

 

and the second contains inversely symmetric unknowns: 
 

22 2 24 4 25 5 2

42 2 44 4 45 5 4

52 2 54 4 55 5 5

0,

0,

0.

F

F

F

r Z r Z r Z R

r Z r Z r Z R

r Z r Z r Z R

    
    
    

 

 

After determining unit and load reactions (we advise the reader to 
find them independently), these subsystems of equations will have the 
following form: 

 

1 3

1 3

1 1
5.0 90.0 0,

12
1 199 1

6.0 0,
12 288

Z Z
EJ

Z Z
EJ

   

  


 

 

2 4 5

2 4 5

2 4 5

1 2
5.0 0,

12 3
1 199 2 1

6.0 0,
12 288 9

2 2 2 1
14.0 0.

3 9 9

Z Z Z

Z Z Z
EJ

Z Z Z
EJ

   

     

     

 

 

Their solutions are:  
 

1
1

17.8912Z
EJ

   rad,      2
1

41.1114Z
EJ

  rad,  

 

3
1

6.5257Z
EJ

   m,     4
1

108.445Z
EJ

  m,     5
1

294.78Z
EJ

  m. 

 

The final diagram of bending moments is based on the expression: 
 

1 1 2 2 3 3 4 4 5 5FM M M Z M Z M Z M Z M Z      . 
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It is depicted in Figure 9.24, i. 
 

 

 

 
 

Figure 9.24 
 
Analyzing the subsystems of equations recorded in this example, we 

can draw the following conclusions. 
1. If a symmetric exposure has an effects on a symmetrical frame, 

then the free terms in the system of equations with inversely symmetric 
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unknowns will be equal to zero. Therefore, inversely symmetric un-
knowns will also be equal to zero (from the solution of the system of 
homogeneous equations). 

2. If the external action is inversely symmetric, then the symmetric 
unknowns become zero. 

As a consequence of the method of grouping unknowns, it should be 
noted that the calculation of a symmetric system for a symmetric or in-
versely symmetric load can be performed for one half of the design 
scheme. Depending on the loading in the second half of the system, the 
distribution of forces will be symmetrical or inversely symmetric compared 
to the first half. 

In particular, if the axis of symmetry crosses a certain bar, then in this 
section it is necessary to set movable pinching, when a load is symmet-
rical. For example, for the frame (Figure 9.22, a), the corresponding 
“half frame” is shown in Figure 9.25, a. Under the action of the inverse 
symmetric load in such section, the deformed axis of the bar has an in-
flection point and, in addition, the vertical displacement of the section (in 
the direction of the axis of symmetry) is zero. Therefore, in the design 
scheme of the “half frame” in the indicated section, a hinged movable 
support is placed (Figure 9.25, b). 

 

 
 

Figure 9.25 
 

9.9. Calculating Frames Subjected to Thermal Effects 
 

The calculation is carried out to change the temperature of the system 
with respect to the temperature of its initial state. Accepting the linear 
law of temperature change along the height of the cross section of the 
bar, the thermal effect can be represented as the sum of the symmetric 
and inverse symmetric components of this effect. 
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Suppose, for example, that a bar has a symmetric cross section of 
height d  (Figure 9.26, a) and 1 2t t , i. e., the lower fibers of the bar are 
“warm”, but the upper ones are “cold”. 

Let us decompose this effect into a symmetric and inversely symmet-
ric. At symmetric exposure the bar is uniformly heated (Figure 9.26, b). 
The temperature of the upper and lower fibers is the same and equal to 

 

1 2

2

t t
t


 . 

 

The elongation of the bar in this case is equal to .t l  At inversely 
symmetric exposure (Figure 9.26, c), the temperature of the upper fiber 

is equal to 1 2

2 2

t t t
   , and the bottom to 

2

t
. With inversely symmet-

ric heating, the temperature along the axis of the bar is zero. The bar 
from such exposure does not elongate, but only bends. The value of the 
displacement of any of its points is determined according to the rules set 
out in section 7.8. 

 

 
 

Figure 9.26 
 

A similar decomposition of the thermal effect can be done for the 
bars with the conditions for the fastening of their ends corresponding to 
the fastening of the bars in the primary system of the displacement 
method. 
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With a symmetric distribution of temperatures, due to the elongation 
(shortening) of the bars, the nodes of the primary system move, which 
leads to mutual displacements of the ends of the bars in the transverse 
direction and causes their bending deformation. 

In the case of inverse symmetric temperature distribution, the nodes 
of the primary system are not displaced, but since the bonds at the ends 
of the bars impede their free movement, forces appear in each of them. 
Diagrams of moments for such bars are presented in table 9.1 (lines 5, 
10, 15). The technique of their construction is given in section 9.2  
(example 5). 

The canonical equations for calculating the frames for temperature 
change are as follows: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

0,

0,

. . . . .

0.

n n t

n n t

n n nn n nt

r Z r Z r Z R

r Z r Z r Z R

r Z r Z r Z R

     
     


     






                   (9.11) 

 
To determine free terms 1 2, , ,t t ntR R R of the canonical equations, 

as follows from the previous reasoning, it is necessary to construct dia-
grams of bending moments in the primary system:  tM  due to symmet-

ric termal action and  tM   due to inversely symmetric action. Using 

them, we find that: 
 

it it itR R R   ,       1,i n , 
 

where itR , itR  are the reactions in the i-th additional bond (link) caused 
by these influences. 

The final diagrams of bending moments is built according to the formula 
 

1 1 2 2t t n nM M M M Z M Z M Z       . 
 

E x a m p l e 1. Let us build the final diagram of the bending mo-
ments in the frame (Figure 9.27, a) from the specified heat exposure, 
taking the stiffness of the bars the same and equal to 60 MN·m2, the 
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height of the cross section d = 0.6·m, the coefficient of thermal linear 
expansion α = 1.2·10–5·(°C)–1. 

The kinematic indeterminacy of the frame is two. Figure 9.27, b 
shows the symmetric temperature distribution for each bar, and Figu- 
re 9.27, c – inversely symmetric. 

 

 
 

Figure 9.27 
 

The system of canonical equations in this case can be written as: 
 

11 1 12 2 1

21 1 22 2 2

0,

0.
t

t

r Z r Z R

r Z r Z R

   
   

 

 

Due to the symmetric effect of temperatures, the plotting of moment 
diagram tM   must begin by determining the elongation of each bar ac-

cording to the formula .t l    Then it is necessary to depict the new 
position of the nodes and the deformed position of the bars in the prima-
ry system (Figure 9.27, d). Knowing the mutual displacements of the 
ends of each bar in the direction perpendicular to its axis and using the 
data from Table. 9.1 (lines 1, 6, 11), it is possible to make a diagram of 
bending moments. Final diagram tM   is shown in Figure 9.28, a. 
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In this example, to build diagram tM   (Figure 9.28, b), lines 5 and 10 
from table 9.1 are used. On each bar of the frame, the stretched fibers are 
more “cold”. It is from this side of the bar that the bending moments dia-
gram is located. 
 

 
 

Figure 9.28 
 

Unit diagrams of moments are shown in Figure 9.29, a, b. 
The reactive forces in additional links having been determined, the 

system of canonical equations can be written in numerical form: 
 

1 2

1 2

2 0.375 3 0,

0.375 0.2013888 28.5 0.

Z Z

Z Z

    
     

 

 

Its solution is: 1 38.4636Z    rad; 2 213.1391Z    m. 
 

The final bending moments diagram is shown in Figure 9.30. In pa-
rentheses there are the ordinates of the moments (in kNm) at EJ  =  
= 60 MNm2 and α =  1.2 10–5 deg–1. 
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The correctness of the plot of bending moments is checked using the 
equilibrium conditions of any fragments of the frame, in particular, the 
nodes of the frame. As a rule, this check is enough to conclude that plot 
M  is correct. 

 

 
 

Figure 9.29 
 

 
 

Figure 9.30 
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However, in addition, another check can be used: the result of “mul-
tiplying” the total unit diagram of the moments of the method of dis-
placement by the final diagram should be zero, that is: 

 

0SM Mdx

EJ
 . 

 
9.10. Calculating Frames Subjected to Settlement of Supports 

 
A distinctive feature of the calculation of frames at the given support 

settlements is associated with constructing the diagram of the bending 
moments in the primary system of the displacement method due to such 
displacements. In the future we will denote this diagram by cM . To do 
this, it must be remembered that additional floating links in the primary 
system prevent only the rotation of rigid nodes, while they allow linear 
displacements of nodes. Therefore, the effect of linear (horizontal or ver-
tical) displacement of any support can be extended on too many frame 
elements adjacent to the displaced post or the displaced crossbar. 

When constructing diagram cM , it is recommended to use the princi-
ple of independence of the action of forces. First, it is necessary to con-
struct the bending moments diagrams caused by the given displacements 
of each support individually. Then the total summarized diagram of ben-
ding moments cM  must be constructed, with the help of which free terms 

icR  are determined. As a result, a system of canonical equations is formed: 
 

0cR z R 


. 
 

The following calculation algorithm remains the same as when calcu-
lating frames for force impact. 

The main verification of the final bending moments diagram is re-
duced to checking that the equilibrium conditions of the nodes and other 
parts of the frame are satisfied. 

 
As in the calculation of the thermal effect, the result of the “multipli-

cation” of the total unit moments diagram SM  of the displacement 
method on the final moments diagram should be zero, that is: 
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0.SM M dx

EJ
  

 
Note that no matter what method was used to construct the final dia-

gram of bending moments, to check its correctness you can apply the 
kinematic check used in the force method. In particular, when calculat-
ing frames for support displacement, the result of “multiplying” the total 
unit moment diagram of the force method by the final moment diagram 
should be equal to the sum of the free terms of the canonical equations of 
the force method, taken with the opposite sign: 

 

,S
ic

M M dx

EJ
     

 
where SM is the total unit diagram in the primary system of the method 
of forces. 
 

E x a m p l e 1. Let us consider the features of calculating the frame, 
the support of which is displaced as shown in Figure 9.31, a. Let c1 =  
= 0.02 m, c2 = 0.04 m and c3 = 0.1 rad. The bending stiffnesses of all 
bars are assumed the same.  

The primary system and the primary unknowns of the displacement 
method are shown in Figure 9.31, b. 

 

 
 

Figure 9.31 
 

Unit bending moments diagrams are shown in Figures 9.32, a, b. 
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Figure 9.32 
 

Figures 9.33, a, b, c show the diagrams of the bending moments 
caused by the displacements of the support connections, respectively, by 
c1, c2, and c3. 

 

 
 

Figure 9.33 
 

The construction of these diagrams, as well as unit ones, is performed 
using the data in Table 9.1. The total diagram cM  (not shown in this 
example) is constructed by the expression: 

 

1 2 3
.c c c cM M M M    
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The canonical equations have the form: 
 

11 1 12 2 1

21 1 22 2 2

0,

0,
c

c

r Z r Z R

r Z r Z R

   
   

 

 

where  
 

1 2 31 1 1 1 ,c c c cR R R R          
1 2 32 2 2 2c c c cR R R R   . 

 
After determining the values of the coefficients and free terms, we 

solve the system of equations and find: 
 

1 0.00905Z   rad;      2 0.01675Z    rad. 
 

The final diagram of the bending moments is shown in Figure 9.34. 
 

 
 

Figure 9.34 
 

9.11. Constructing Influence Lines for Efforts 
 

The methodology for constructing the influence lines of efforts in 
statically indeterminate systems is reduced to the implementation of the 
formulas by which they are calculated. When calculating frames by the 
displacement method, the force in cross section”k” is calculated by the 
formula: 

1
.

n

k kF ki i
i

S S S Z


    
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The quantities kFS  and iZ  given in this expression to the right of the 
equal sign are variables depending on the position of the external force 

1,F   but quantity kiS is the constant force in cross section ”k” of the 
primary system caused by the offset of the i-th additional link by one. 
Therefore, in relation to the problem of constructing influence lines, this 
record can be represented as: 

 

Inf. Line kS  = Inf. Line 
1

n

kF ki
i

S S


  (Inf. Line iZ ). 

 
In the last expression the designation “Inf. Line kFS ” is the influence 

line for effort kS  in the primary system of the displacement method. The 

name of effort kFS  in this case can be replaced by 0.kS  
The construction of this influence line does not cause any particular 

difficulties. Indeed, in the primary system, the ends of each bar in the 
nodes are pinched or pivotally supported and therefore the load located 
on it does not affect the forces in adjacent bars. As a result, the influence 
line of kFS  will have ordinates that are not equal to zero, only on the  

bar to which section “ k ” belongs. Determining kS  according to the  
table 9.1 for various positions of force 1,F   we will construct Inf. Line 

0
kS  (Inf. Line ).kFS  

It is more complex to construct influence lines iZ . Building them 
based on a static method requires determination of the values of the pri-
mary unknowns for various positions of the unit force 1.F   

Consider the following example. The frame shown in Figure 9.35, a, 
is once kinematically indeterminable. The canonical equation 

 

11 1 1 0Fr Z R   
 
for 1F  can be rewritten in the form 
 

11 1 1 0.Fr Z r   
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Consequently,  

1
1

11

.Fr
z

r
   

 
Diagram 1M  in the primary system is shown in Figure 9.35, b. From 

the equilibrium equation 
 

0BM   
 

it follows that 
 

11
11EJ

r
l

 . 

 
In the loading state of the primary system at positions of force 1F   

to the left of node B  (Figure 9.35, c) the free term is equal to: 
 

 2
1 1 .

2F
l

r v v   

 
The corresponding angle of rotation 1Z  will be determined by the ex-

pression: 
 

 
2

2
1 1

22

l
Z v v

EJ
   . 

 
By setting variables v  and 1u v   values from 0 to 1, we calculate 

1Z  and construct a line of influence in length AB . 
With the location of force 1F   on the console section of the frame 

(Figure 9.35, d) we get 
 

1 1Fr x    and 1 11

x
Z l

EJ
 . 

 
Inf. Line 1Z  is shown in Figure 9.35, d.  
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Figure 9.35 
 

The shape of the constructed influence line can be checked using the 
kinematic method. Section 7.11 shows that to construct an influence line 
for the displacement of i-th cross section, it is necessary to apply a unit 
force in this section and plot the displacements diagram due to this force. 
The position of the bended axes of the bars along which force 1F   
moves will correspond to the outline of the influence line for the investi-
gated displacement. This method is based on the theorem on reciprocity 
of displacements. 

In this example, to build an influence line of the angle of rotation of 
node B (Inf. Line 1Z ), it is necessary to load this node by a unit moment 

in the positive direction of 1Z  and show the position of the curved axes 
of the bars (Figure 9.36). 
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Figure 9.36 
 

The ordinates of the displacement diagram thus obtained, counted 
from the initial position of the bars in the direction of the force F = 1, are 
considered positive. 

Their numerical values, if necessary, can be found according to the 
well-known rules of structural mechanics. 

To build, for example, Inf. Line kM  in the given system (Figu- 

re 9.35, a) it is necessary to pre-build Inf. Line 0
kM  in the primary sys-

tem. We restrict ourselves to considering the position of the unit force on 
the beam AB  in three characteristic sections (Figure 9.37, a). 

Having determined for each position of the force the value of the 

bending moment in cross section “k”, we construct Inf. Line 0
kM  (Figu-

re 9.37, b). 
Next, using the expression: 
 

Inf. Line kM  = Inf. Line 0
1k kM M (Inf. Line 1Z ), 

 
and determining that (Figure 9.35, b) 
 

1
3

2k
EJ

M
l

  , 

 
we obtain Inf. Line kM  (Figure 9.38). 

It is clear that for frames with a large number of unknowns, the 
amount of computation for constructing influence lines increases signifi-
cantly. Therefore, a practical solution to the problem of constructing the 
influence lines for efforts in a frame is reduced to calculating it with the 
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help of certified software systems for many unit loads and compiling an 
appropriate influence matrix. 
 

 
Figure 9.37 

 
Figure 9.38 

 
It is known that it has the form: 
 

11 12 1

21 22 2

1 2

1 2

. . . .

. . . .

n

n

S
i i in

m m mn

S S S

S S S

L
S S S

S S S

 
 
 
 

  
 
 
 
 








. 

 
By definition, ikS  is the force in the i -th section of the structure 

caused by a unit force applied in section .k  Elements of the i -th row of 
the matrix SL  give the ordinates of the influence line for effort .iS  In 
order to find the elements of the k-th column of the influence matrix, it is 
necessary to calculate the given structure for loading it by force 1.kF   

The number of such unit loads is .n  
The following example will explain the features of calculating and 

plotting the influence line for efforts using the matrix of the influence  
of efforts. 



314 

The design diagram of the frame is shown in Figure 9.39, a. The 
shape of any influence line in the area between adjacent nodes can be 
represented by the values of the ordinates of efforts in three equally 
spaced sections. Therefore, we will calculate the frame by loading it with 
forces 1F   applied sequentially in each characteristic section between 
the nodes and compose, for example, the matrix of the influence of bend-
ing moments .ML  This matrix has the form: 

 

ML

1.6647 0.9135 0.3305 –0.1052 –0.1042 –0.0511 0.0210 0.0240 0.0150 
0.8293 1.8269 0.6611 –0.2103 –0.2083 –0.1022 0.0421 0.0481 0.0300 
–0.0060 0.2104 0.9916 –0.3155 –0.3125 –0.1532 0.0631 0.0721 0.0451 
–0.2654 –0.4247 –0.3716 1.0196 0.2778 0.0220 0.0070 0.0080 0.0050 
–0.1302 –0.2083 –0.1823 0.5208 1.5278 0.5208 –0.1823 –0.2083 –0.1302
0.0050 0.0080 0.0070 0.0220 0.2778 1.0196 –0.3716 –0.4247 –0.2654
0.0451 0.0721 0.0631 –0.1532 –0.3125 –0.3155 0.9916 0.2404 –0.0060
0.0300 0.0481 0.0421 –0.1022 –0.2083 –0.2103 0.6611 1.8269 0.8293 
0.0150 0.0240 0.0210 –0.0511 –0.1042 –0.1052 0.3305 0.9135 1.6647 

 

According to the second and fifth rows of matrix ,ML  Inf. Line 2M  

(Figure 9.39, b) and Inf. Line 5M  (Figure 9.39, c) are constructed. Since 
the stiffness of the rods in tension-compression in this calculation is as-
sumed to be infinity, i.e. their longitudinal deformations are neglected, 
then at the points corresponding to nodes A and B, the ordinates of the 
influence lines are zero. 

Of course, it is advisable to perform calculations of such and more 
complex systems for many loads with the help of software systems 
available in design organizations. 

In the same way it would be possible to compose matrices of the  
influence of transverse or longitudinal forces and construct the neces-
sary influence line for these efforts. Figure 9.39, d shows the influence 
line for 5.Q  

The calculation results also allow one to obtain influence matrices of 
displacements. Let us pay attention to the line of influence of vertical 
displacement of section 2 (Figure 9.39, f) and influence line for the angle 
of rotation of node B (Figure 9.39, e). Their shape is consistent with the 
recommendations of section 7.11: to obtain the first one should use force 
F = 1 applicated in section 2; in the second case, at point B, moment 
М = 1 is applied (directed counterclockwise). The numerical values of 
the ordinates correspond to EJ = 13.5 МН  м2. 
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Figure 9.39 
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9.12. Calculating Frames Taking into Account 
Longitudinal Deformation of the Bars 

 

As noted in Section 9.1, each rigid node of a plane frame has three 
degrees of freedom, each hinged node – two. For this reason, the degree 
of kinematic indeterminacy of the frames, in the calculation of which the 
longitudinal deformations of the bars are taken into account, is much 
higher than the frames, in the calculation of which the longitudinal de-
formations are neglected. 

In order to form the primary system of the displacement method, three 
additional links are superimposed on each rigid node of a given system, 
and two linear links on each hinged one. To determine the coefficients and 
free terms of the canonical equations, it is necessary to construct diagrams 
of bending moments and longitudinal forces in the primary system, caused 
by unit displacements of additional links and given exposures. 

The values of the coefficients and free terms are found by the static 
method from the equilibrium equations of the nodes of the main system. 

The same values of the coefficients of the canonical equations of the 
displacement method can be found with kinematic method by the formula: 

 

i k i k
ik

M M dx N N dx
r

EJ EA
    . 

 

The second term in this expression is calculated in the same ways as 
the first, in particular, for example, by “multiplying” the corresponding 
diagrams of longitudinal forces. 

The influence of this term on the value of rik, as follows from the 
above expression, increases with a decrease in the stiffness of the bars on 
tension-compression. 

 

Some features of calculating the coefficients and distribution of ben-
ding moments will be shown on the example of the frame shown in Fi-
gure 9.40 a. 

The primary system and the positive directions of the primary un-
knowns are shown in Figure 9.40, b. We restrict ourselves to considering 
diagrams 1 1,M N  and FM  (Figures 9.40, c–e).  

From the equilibrium condition of node 3 (Figure 9.40, f)  
 

 0X     we find   11 9 6

EJ EA
r   . 
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Figure 9.40 
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Naturally, the same value 11r  will be obtained by the kinematic 
method: 

 

11
1 1 2 1

3 6
2 3 3 3 6 6 9 6

EJ EJ EA EA EJ EA
r

EJ EA
        . 

 
To determine the free terms of the canonical equations, one should use 

the distribution of forces at the nodes shown in Figures 9.40, g, h, or use 
the kinematic method. In the latter case: 

 
0 0

i F i F
iF

M M dx N N dx
R

EJ EA
     , 

 

where ,i iM N  – functions of bending moments and longitudinal forces 
from unit displacements of nodes in the primary system of the displace-
ment method; 

0 0,F FM N  – functions of bending moments and longitudinal forces 
from the given load in the primary system of the force method. 

The influence of longitudinal deformations on the distribution of in-
ternal forces in the frame can be judged by the final bending moments 
diagrams constructed at the ratio 

 
2

10,
EA h

EJ


  

 

where h = 1 m (Figure 9.40, i), and at EA  (there are no longitudi-
nal deformations) (Figure 9.40, j). At  
 

2

10,
EA h

EJ


  

 
the calculation results will be even more different from those that corre-
spond to the calculation option with EA . 

An increase in the flexibility of the bars under tension-compression 
leads to an increase in the displacements of the nodes, and therefore, the 
calculation of such frames according to an undeformed scheme should 
be considered as approximate. 
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THEME 10. SIMULTANEOUS APPLICATION OF THE FORCE 
AND DISPLACEMENT METHODS. MIXED METHOD 

 
10.1. Force and Displacement Methods in Comparison 

 
Both the force method and the displacement method have its ad-

vantages and disadvantages. Each of them, taking into account the as-
sumptions used in the calculation, is accurate. In both methods, it is also 
possible to take into account the influence of longitudinal and shear de-
formations in addition to bending deformations. Which one should be 
used for calculation? 

With manual calculations, the search for the best method for calculat-
ing of the given system is reduced, in most cases, to the search for a cal-
culation variant with the least laboriousness. Most often the choice of 
one or another method depends on the number of unknowns. 

As a rule the best way to do the calculation of frames, the nodes of 
which do not have linear mobility is by the displacement method. Dia-
grams of effort are easy to construct, have local character and, because 
of this, the system of canonical equations is rarefied. However, when 
longitudinal deformations are taken into account the number of dis-
placement method unknowns increases significantly. 

The choice of a rational primary system of the method of forces and 
the construction of diagrams are associated with a more complex logic of 
understanding the structure of the system. The operation to calculate the 
coefficients and free terms of the canonical equations is also quite time-
consuming. In the displacement method, this part of the calculations, 
carried out, for example, in a static way, is less time-consuming. As an 
advantage of the force method, we note that the degree of static indeter-
minacy of a given system does not depend on whether or not the influ-
ence of longitudinal deformations is taken into account in the calculation. 

The above remarks on the methods discussed are a qualitative charac-
teristic of them. Note, in addition, that in each particular case, the engi-
neer has the right to choose any of them, guided by their own level of 
knowledge of these calculation methods. 

The decision to choose a method for automated computing is associ-
ated not so much with the computational procedures for each of them, 
but with the features of the primary system. The logic of automating the 
process of choosing the primary system of the displacement method is 
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simpler. The ideas of the displacement method are widely used in the 
development of software systems for calculating and designing building 
structures. 

 
10.2. Force and Displacement Methods. 

Simultaneous Application 
 

To choose a rational calculation method an engineer must deep un-
derstand the main principles of the force and displacement methods. In 
particular, joint application of these methods is possible for the calcula-
tion of both symmetric and asymmetric systems.  

Let us first consider the features of the calculation of symmetric sys-
tems. The load applied to such a system can always be decomposed into 
symmetrical and inverse-symmetric (otherwise, skew-symmetric) com-
ponents. As a rule, it turns out that it is convenient to calculate a frame 
under the symmetric load component by one method, for example, by the 
displacement method, and it is convenient to calculate the same frame 
under the inverse-symmetric load component by the other method, for 
example, by the force method. The final result of calculating the frame 
for a given load is obtained by summing the results of its calculation on 
both load components. Now let us consider an example. 

The frame (Figure 10.1, a) has four unknowns by the displacement 
method (the primary system and the primary unknowns are shown in 
Figure 10.1, b) and four unknowns by the force method (Figure 10.1, c). 
The symmetric and inverse-symmetric components of the given load are 
presented in Figures 10.1, d, e. The calculation of the frame due to the 
action of the symmetrical load is performed by the displacement method, 
since in this case the only unknown, not equal to zero, will be unknown 

1.Z  To calculate the frame on the inverse-symmetric load, we use the 

force method, because in this case only 3X  will be non-zero. 
The bending moment diagrams corresponding to the action on the 

frame of the symmetrical and inverse-symmetric loads are shown in Fig-
ures 10.1, f, g. And the final diagram of bending moments is shown in 
Figure 10.1, h. 

The presented version of the frames calculation in the educational liter-
ature is sometimes called the combined method of calculation. 
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Figure 10.1 
 

The combined application of the force and the displacement methods 
is also possible in the calculation of non-symmetric systems.  

In order to reduce the number of unknowns, the primary systems of 
the force method or the displacement method can be adopted, respective-
ly, statically or kinematically indeterminate. The same method is used to 
calculate both the given system and the primary system. 

Moreover, if the calculation is performed by the force method, then 
the primary statically indeterminated system is chosen so that it may be 
easly calculated by the displacement method. In this case, the force 
method is the main calculation method, and the displacement method is 
the auxiliary method.  
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If the displacement method is taken as the main method, then the kin-
ematically indeterminate fragment of the primary system is calculated by 
the force method (auxiliary method). 

The features of such calculation will be explained in the following 
examples. 

For the frame (Figure 10.2, a), we will take the displacement method 
as the main calculation method, and select the primary system according 
to the variant shown in Figure 10.2, b, i.e. we will calculate the given 
frame as a twice kinematically indeterminate system. 

 

 

 
 

Figure 10.2 
 

To construct diagrams of bending moments caused by the given loads 
and by the unit values of unknowns, first it is necessary to first calculate 
a statically indeterminate fragment ABC D  on the action of the given 
load and the rotation of the support constraint at point D  through angle

1 1Z  . The frame ABC D  is statically indeterminate once (by the dis-
placement method the number of unknowns is equal to two). Therefore, 
its calculation is performed by the force method, which in this version of 
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its use is considered as auxiliary. The corresponding final moments dia-
grams caused by the mentioned loads are shown in Figures 10.3, a, b. 

 

 
 

Figure 10.3 
 

Further, following the well-known algorithm for calculating frames 
by the displacement method, we construct load diagram FM  (Figu- 

re 10.4, a), unit diagrams 1M  and 2M  (Figures 10.4, b, c) in the primary 
system. Ultimately, the final bending moments diagram (Figure 10.4, d) 
is constructed in the given system. 

 

 
 

Figure 10.4 
 
Let us consider another example. The frame (Figure 10.5, a) contains 

seven redundant constraints. However, we will calculate this system un-
der the action of given load as a system containing three unknowns. 

The primary system of the force method (this method is the main here) 
is shown in Figure 10.5, b. It includes statically indeterminate fragment 
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ABC  and symmetric to it fragment .A B C    In order to build the mo-
ment diagrams in the primary system of the force method, first it is neces-
sary to calculate these fragments due to the loads that they perceive. 

 

 
 

 
 

Figure 10.5 
 

Frame ABC  contains one unknown of the displacement method. The 
bending moment diagrams due to the action of a unit distributed load and 
a unit moment are shown in Figures 10.6, a, b. 

 

 
 

Figure 10.6 

m
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With their help, using the properties of linearly deformable systems, 
we construct a load diagram (Figure 10.7, a) and, as an example, the  
second unit diagram (Figure 10.7, b) of bending moments in the primary 
system of the force method. 

Two other unit diagrams are constructed taking into account the dis-
tribution of moments on fragment ABC  due to the 1M   (Figure 10.6, b). 
The further calculation course corresponds to the algorithm of the force 
method. 

 

 
 

Figure 10.7 
 

10.3. Mixed method 
 

When calculating the frame by the mixed method, the main un-
knowns in one part are efforts in the redundant constraints. In the other, 
the remaining part, the unknowns are the displacements of the nodes. 
That is, during the calculation, both groups of unknowns (force method 
unknowns and displacement method unknowns) are determined simulta-
neously. The choice of unknowns, of course, is determined by the struc-
ture of the given frame. As a rule, in the part where a small number of 
redundant constraints are observed, the redundant links are removed and 
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the primary unknowns of the force method are introduced, and in the 
other part, the additional constraints are introduced that prevent the an-
gular and linear displacements of the nodes. These displacements are 
primary unknowns of the displacement method.  

The system of equations from which these unknowns are determined 
is written on the basis of conditions similar to those used to write the 
canonical equations of the force method and the displacement method. 
We will give more complete explanations of the essentially mixed meth-
od by the example of calculation the frame shown in Figure 10.8, a. 

Fragment AD of this frame (there is rigidly fixed support in node D) 
contains only two redundant constraints; it is convenient to calculate it 
by the force method; to calculate the rest part of the frame (its nodes are 
located at points B, C, D, E, G) it is more convenient to use the dis-
placement method. Based on these considerations, we accept the primary 
system as it is shown in Figure 10.8, b. 

 

 
 

Figure 10.8 
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In this primary system the bending moment diagrams caused by the 
unit value of primary unknowns and by the given load are shown in Fig-
ure 10.9. From diagram 1M  (Figure 10.9, a) it can be seen that force 

1 1X   causes in the third additional link (its number corresponds to the 

number of the primary unknown) reactive force 31r  (note: the reaction 
(force) is caused by the force). 

In the displacement method, the notation 31r  would indicate the reac-

tion in the third constraint caused by the displacement 1 1Z  , that is, the 

causes of the reactions 31r  and 31r  are different, therefore they are de-

noted differently. Similarly, the physical meaning of the reaction 32r  
should be understood too. 

 

 
 

Figure 10.9 
 
There is diagram 3M  in Figure 10.9, c. The displacement of applica-

tion point of force 1X  in its direction caused by displacement 3 1Z  , is 



328 

denoted by 13 . As in the case of the notation of reactions, writing 13  
with the dash emphasizes the difference between this displacement and 
the displacement 13 , caused by force 3 1X   (see the force method). 

In accordance with the theorem of reciprocity of reactions and dis-
placements (9.8) 31 13r   . Indeed, from the equilibrium equation of 

node D (Figure 10.9, a) it follows that 31 3,0r  , Indeed, from the equi-
librium equation of node D (Figure 10.9, a) it follows that displacement 

13  occurs in the direction opposite to force 1 1X  . 

The value 13  can also be found by the rules for determining the dis-
placements caused by the support settlements. 

We now write down the canonical equations of the mixed method: 
 

11 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

31 1 32 2 33 3 34 4 3

41 1 42 2 43 3 44 4 4

0,

0,

0,

0.

F

F

F

F

X X Z Z

X X Z Z

r X r X r Z r Z R

r X r X r Z r Z R

           
           
      
      

           (10.1) 

 
The first equation from this system expresses the condition that the 

displacement of the application point of force 1X  in its direction is equal 
to zero, where the first and second terms are the displacements caused by 
the forces 1X  and 2X , the third and fourth are displacements caused by 

the rotations of the nodes at angles 3Z  and 4Z , and the fifth is the  dis-
placement caused by the load. The meaning of the second equation is 
revealed in a similar way. 

The third and the fourth equations have the meaning of the displace-
ment method equations: the total reactions in the third and fourth addi-
tional constraints caused by the unit forces 1X , 2X  and the unit dis-

placements 3Z , 4Z , as well as the load, are equal to zero. 

In equations (10.1), the coefficients ik  and the free terms iF  are 
determined in the same way as in the force method. For example,  

 

1 2
12

M M dx

EJ
   ,        1

1
F

F
M M dx

EJ
   . 
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Coefficients ikr  and free terms iFR  are determined by the ways used 
in the displacement method. For example, from the equilibrium of forces 

in the node D (Figure 10.9, d) we find 34 3

EJ
r  .  

From the equation of equilibrium of moments in the same node on  
the bending moment diagram, caused by the given load, we obtain 

3 123.27FR   . 

The coefficients ikr  and ki , as it has already been  noted, are related 
by the ratio: 

 

ik kir   . 
 

Analyzing the distribution of moments in Figures 10.9, a, b note that 

41 0r   and 42 0r  . 
Having determined the coefficients and free terms, we obtain: 

 

1 2 3

1 2 3

1 2 3 4

1 2 3 4

446.17 325.2 5571.96
3 0 0;

325.2 360.34 3704.6
9 0 0;

8 1
3 9 123.27 0;

3 3
1 7

0 0 0 0.
3 3

X X Z
EJ EJ EJ

X X Z
EJ EJ EJ

X X EJ Z EJ Z

X X EJ Z EJ Z

     

     


      


        


 
System solution: 

 

1 16.165X    kN;      2 5.476X    kN;  
 

3
1

46.765Z
EJ

  rad;      4
1

6.681Z
EJ

   rad. 

 
Final moment diagram is formed according to the following formula: 

 

1 1 2 2 3 3 4 4.FM M M X M X M Z M Z      
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It is shown in Figure 10.10. 
 

 
 

Figure 10.10 
 



331 

THEME 11. CALCULATING CONTINUOUS BEAMS 
 

11.1. General information 
 

A beam that overlaps two or more spans, not interrupted along its 
length by hinges is called a continuous beam. 

The degree of static indeterminacy of continuous beams can be de-
termined according to general rules (section 8.2). Since the beam is a 
single disk that overlaps several spans, the formula (8.2) is converted to: 

 

0 3L   .                                      (11.1) 
 

Beams shown in Figures 11.1, a, b contain two and three redundant 
constraints, respectively. 

 

 
 

Figure 11.1 
 

The reader is already familiar with the methods of calculation of 
statically indeterminate frames for various types of external actions 
(see the Themes 8, 9, 10). Features of the application of continuous 
beams calculation are considered in the next section. 

 
11.2. Examples of Continuous Beam Calculation 

 
E x a m p l e 1. Construct bending moments and shear forces diag-

rams for the continuous beam (Figure 11.2, a) using the force method. 
The degree of static indeterminacy of the beam is equal to three.  The 

primary system of the force method can be obtained by eliminating of 
support rods (Figure 11.3, b). Then, support reactions will be accepted as 
unknowns. It is easy to notice that in this case, none of the secondary 
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coefficients of the canonical equations is equal to zero (Figure 11.3, c). 
The same can be seen, "multiplying" the corresponding unit moment di-
agrams. This means that such a primary system is not rational. 

 

 
 

Figure 11.2 
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Figure 11.3 
 

But the primary system obtained by introducing hinges into sections 
above the supports will be more successful (rational). (Figure 11.2, b). 
With this choice of the primary system, the continuous beam is divided 
into separate single-span beams. The primary unknowns in this case are 
the bending moments at the support cross-sections. 

Having constructed in the primary system the bending moments dia-
grams caused by unit value of primary unknowns (Figures 11.2, c–d) and 
acting load (Figure 11.2, f), we calculate the coefficients and free terms 
of the canonical equations. 

After simple transformations, we obtain the equations in the follow-
ing form: 

 

1 2

1 2 3

2 3

4 2
30 0;

3 3
2 7 1

75 0;
3 3 2

1
2 80 0.

2

X X

X X X

X X

   

    

   

 

 
We note that with the indicated way of selecting the primary system 

for a continuous beam, the first and last equations contein two un-
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knowns, and all intermediate equations have three unknowns (the equa-
tion i contains unknowns 1 1, , ).i i iX X X   

Having solved the system of equations, we find: 
 

1
71

6
X    kN·m,     2

64

3
X    kN·m,     3

104

3
X    kN·m. 

 
The final bending moment diagram (Figure 11.2, g) is based on the 

expression: 
 

1 1 2 2 3 3FM M M X M X M X    . 
 

The analytical expression for determining the bending moment in the 
cross-section, which is located between the support points of the beam, 
can be obtained from formula (8.16). 

A kinematic check of the correctness of the diagram M  consists in 
checking the displacements in the directions of the primary unknowns 
and is performed according to the formula (8.23). 

The shear forces diagram is shown in Figure 11.2, h. 
To determine the reaction in the support with the number n (Figu- 

re 11.4), we cut out an infinitely small section of the beam using two 
sections located on both sides of the support, and show the shear forces 
in these cross-sections. From the equation 0Y   it follows that:  

 

1 .n n nR Q Q   
 

In particular, in the fixed support (Figure 11.5) and the first interme-
diate support (Figure 11.6), the vertical reactions are 12.625 kN and 
45.155 kN, respectively (Figure 11.6). 

 

 
Figure 11.4

 
Figure 11.5 

 
Figure 11.6
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E x a m p l e 2. Calculate the same beam (Figure 11.7, a) using the 
displacement method. 

The degree of kinematic indeterminacy of a continuous beam is a var-
iable characteristic. Indeed, any cross-section of the beam can be de-
clared as a node in which two rods are joined. Such a node, in the gen-
eral case, will have two degrees of freedom: vertical displacement and 
the angle of rotation (displacement along the beam axis according to the 
accepted assumptions for a linearly deformable system is not taken into 
account). In the primary system of the displacement method, such a node 
must be fixed with two additional constraints. As a result, the dimension 
of the beam calculating problem increases. 

In order to reduce the dimension of the problem, it is advisable to 
consider only support nodes. Each section above the supports of the 
beam has only one degree of freedom – the angle of rotation. 

For the given beam (Figure 11.7, a), we choose the primary system of 
the displacement method shown in Figure 11.7 a. The primary unknowns 
are the angles of rotation of the support sections of the beam. 

In Figures 11.7, b–d, the bending moment diagrams caused by unit 
value of primary unknowns are shown, and in Figure 11.7, d the bending 
moment diagram caused by the acting load is shown. 

Having calculated the coefficients and free terms of the canonical 
equations according to well-known rules, we obtain a system of equa-
tions in the following form: 

 

1 2

1 2 3

2 3

7 2
15 0;

3 3
2 8 2

0;
3 3 3

2 4
10 0.

3 3

EJ Z EJ Z

EJ Z EJ Z EJ Z

EJ Z EJ Z

   

   

   

                (11.2) 

 
Having solved the equations system (11.2), we find: 

 

1
19

3
Z

EJ
  rad,     2

1

3
Z

EJ
  rad,     3

23

3
Z

EJ
   rad. 
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Final bending moment diagram is constructed from the expression: 

 

1 1 2 2 3 3FM M M Z M Z M Z    , 
 

It has the form shown in Figure 11.7, g. 
 

 
 

Figure 11.7 
 
The same beam (Figure 11.7, a) also can be calculated using the dis-

placement method as a beam with two unknowns. In this case, the prima-
ry system (Figure 11.8, a) include the “non-standard” element shown in 
Figure 11.9, a (it is not in the set of elements in table. 9.1). The bending 
moment diagrams caused by unit value of two primary unknowns are 
shown in Figures 11.8, b, c. 
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Figure 11.8 
 
The calculation of the “non-standard” element (Figure 11.9, a) on the 

action of a uniformly distributed load is performed by the force method. 
This load moment diagram (Figure 11.9, b) is used to construct the total 
bending moments diagram FM  due to the given load (Figure 11.8, d) in 
the primary system with two primary unknowns 

 

 
 

Figure 11.9 
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The canonical equations, after determining the coefficients and free 
terms, are written in the form: 

 

1 2

1 2

7 2
15 0;

3 3
2 7

5 0.
3 3

EJ Z EJ Z

EJ Z EJ Z

   

  


                    (11.3) 

 
Solving them, we get: 

 

1
19

3
Z

EJ
  rad,       2

1

3
Z

EJ
  rad. 

 
Naturally, the final moment diagram will be the same as in Figu- 

re 11.7, g. 
Note the following. Removing the additional link in the primary sys-

tem (Figure 11.7, a) allowed us to move from the system of equations 
(11.2) to the system (11.3). This transition could be carried out without 
calculating the beam as a twice kinematically indeterminate system. 

To solve the system of equations (11.2), we apply Jordan eliminations 
(Gauss method). The coefficients and free terms of system (11.2) are 
written in the form of table 11.1 (the factors EJ  in front of the unknowns 

iZ  are not included in the table) and we take one step of ordinary Jorda-

nian eliminations, taking the coefficient 33r  as the resolving element. 
 

Table 11.1 
 

   

 Table 11.2

 
 
 
 
 
 
 

  

 1Z  2Z  3Z  1  
1Z  2Z  0 1 

0 = 
7

3
 

2

3
 0 –15 0 = 

7

3
 

2

3
 0 –15 

0 = 
2

3
 

8

3
 

2

3
 0 0 = 

2

3
 

7

3
 

1

2
 –5 

0 = 0 
2

3
 

4

3
 10 3Z  = 0 

1

2
  

3

4
 

15

2
  
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Transition from Table 11.1 to table 11.2 is carried out according to 
the following rules. 

1. The resolving element 
4

3rsa  
 

 is replaced by the inverse 

value. 
2. The remaining elements of the resolving column  s  are divided by 

the resolving element. 
3. The remaining elements of the resolving row  r  are divided by 

the resolving element and change signs. 
4. Other elements are calculated by the formula 

 

ij rs is rj
ij

rs

a a a a
b

a


 , 

 

at ,i r  j s  (according to the rule of the rectangle). 
 

In Table 11.2, the coefficients and free terms of the system of equa-
tions (11.3) are written. Zero columns could not be written to the table. 
From this table it follows that: 

 

3 2
1 15

2 2
EJ Z EJ Z   . 

 

E x a m p l e 3. It shows the calculation of the beam (Figure 11.2, a) 
by the mixed method. 

There are many variations of the primary systems of the mixed meth-
od. Some of them are shown in Figure 11.10. To demonstrate the fea-
tures of the mixed method, we choose the primary system shown in Fi-
gure 11.11, a. 

The bending moment diagrams caused by unit value of primary un-
knowns and acting load are shown. in Figures 11.11, b–e. 

The system of canonical equations for the accepted primary un-
knowns has the following form: 

 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

0;

0;

0.

F

F

F

X X Z

X X Z

r X r X r Z R

        
        
     
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Figure 11.10 
 

We will determine the free terms of the first and second equations, as 
in the force method by “multiplying” the moment diagrams: 

 

1
1

1 1 30
30 4 0.5

2
F

F
M M dx

EJ EJ EJ
      ; 

 

 2
2

30 6 52.5
4 0.25 22.5 45 0.5

6 2
F

F
M M dx

EJ EJ EJ EJ
        


 . 

 
The free term 3FR  is determined from the equation of equilibrium of 

moments in the node with additional fixed link: 3 10.0FR  . 

Since ik kir   , then 32 0.5r  , and 23 0.5   . 
The determination of other coefficients at unknowns is carried out ac-

cording to the rules set out in chapters 8, 9. 
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Figure 11.11 
 

Numerically the canonical equations have the following form: 
 

1 2

1 2 3

2 3

4 2 30
0;

3 3
2 12.5 52.5

0.5 0;
3 6

0.5 2 10 0.

X X
EJ EJ EJ

X X Z
EJ EJ EJ

X EJ Z

   

    


   


 

Having solved the system, we obtain: 

1 11.83X   kN m;     2 21.33X    kN·m;     3
1

3
Z

EJ
  rad. 

 

Final bending moment diagram is constructed from the expression: 
 

1 1 2 2 3 3FM M M X M X M Z    . 
 

It has the same form as in Figure 11.2 g. 
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E x a m p l e 4. The displacements of the supports of the continuous 
beam are shown in Figure 11.12, a. It is necessary to construct the bend-
ing moment diagram, taking 1 0.01c   rad, 2 3 0.06с с   m. 

 

 
 

Figure 11.12 
 
Calculation of the beam subjected by the displacements of the sup-

ports is carried out by the methods considered earlier. We show the solu-
tion by the force method. 
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Let the primary system be the same as shown in Figure 11.12, b. The 
free terms of the canonical equations are determined by the formula (7.13). 
Using the distribution of reactions in the supports (Figures 11.12, c–d),  
we find: 

 1 1 1 11 0.01;с к кR с с с          
 

2 2 2 2
1 1

0.01;
6 6с к кR с с с         

 
  

 

3 3 2 3 2 3
1 1 1 1

0.01.
3 6 3 6с к кR с с с с с            

 
  

 

The coefficients at unknowns have the same values as in example 1. 
We write the canonical equations corresponding to the given dis-

placements of supports: 
 

1 2

1 2 3

2 3

4 2
0.01 0;

3 3
2 7 1

0.01 0;
3 3 2

1
2 0.01 0.

2

X X EJ

X X X EJ

X X EJ

   

    

   

 

 

Solving them, we get: 
 

3
1 5.5 10X EJ    kN·m;      3

2 4.0 10X EJ    kN·m; 
 

3
3 6.0 10X EJ   kN·m. 

 

The diagram M  is shown in Figure 11.12, f. 
 

11.3. Constructing Influence Lines for Internal Forces 
 

To construct influence lines for internal forces by the static method 
(see Sections 8.11, 9.11), it is necessary, in the general case, to calculate 
a continuous beam on the action of force 1F  , applied at a number of 
characteristic points of each span and compose an influence matrix SL  
of internal forces. Based on the values of the i-th row elements, you can 
construct an influence line iS . 
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We calculate the beam on action of the unit force in the sections indi-
cated in Figure 11.13, a and, based on the calculation results, construct 
the influence lines for internal forces. 

The shape of the influence lines for each span, as a rule, is deter-
mined by the values of its ordinates in three intermediate points. For ex-
ample, to build influence line cM  (Figure 11.13, b) or influence line 5M  
(Figure 11.13, c) it is enough to find the corresponding bending mo-
ments cM  or 5M  when the force 1F   locates in the cross-sections 
dividing the span into four parts. 

The shape of influence line for bending moments can have some fea-
tures when it is constructed for sections located near the supports. So, 
when constructing the influence line for bending moment for the section 

2K  (Figure 11.13, d), it turns out that the force 1F   located to the right-
hand of the second span does not cause a bending moment in this cross-
section (such point 2K  is called the left focus of the second span). 

If a certain cross-section 1K  is located between the points B  and 

2 ,K  then the influence lines for the bending moment in this cross-
section of this span will be have double-sign (Figure 11.13, e). There-
fore, in order to avoid errors, in the part of the span to which the effort 
under investigation belongs, the number of trial installations of force 

1F   should be taken as increased. 
It is known that the shape of the influence line, in accordance with the 

kinematic method (see Section 8.11), is similar to the diagram of beam 
deflections caused by the displacement of the corresponding link in its 
direction by value equal to one. For example, to get the outline of inf.line 

5Q  (Figure 11.13, f) it is necessary to move apart the ends of the beam 
adjacent to the fifth cross-section vertically by a length equal to one so 
that this ends remain parallel to each other.  

The numerical values of the ordinates of the influence line are con-
veniently calculated by the static method. 

To establish the form of Influence Line BV  (Figure 11.13, g) it is nec-

essary to remove the support rod at the point B  in the beam and give in 
its direction the displacement equal to unit. The outline of the curved axis 
of the beam will correspond to the outline of the required influence line. 
The ordinates of the influence line are determined by the static method. 
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Figure 11.13 
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11.4. Enveloping Diagrams of the Internal Forces 
 

Continuous beams, like most other structures, are loaded with both 
constant and temporary loads, the nature of the action of which, in the 
general case, turns out to be rather arbitrary: it can be in all spans of the 
beam or only in some of them. Extremal efforts in beam cross-sections 
are dependent on unfavorable loadings the location of which is deter-
mined by using influence lines (see chapter 3).  

However, this method of finding extremal efforts is quite complicated 
and, moreover, does not provide a clear idea of the distribution of the max-
imum and minimum efforts along the length of the beam. 

The problem of determining extremal efforts is solved more simply us-
ing enveloping diagrams of internal forces. Consider the problem of con-
structing enveloping diagrams of bending moments in a continuous beam 
loaded with a constant (Figure 11.14, a) and temporary loads (Figu- 
re 11.14, b). The moment diagram due to the constant load is shown in 
Figure 11.14, c. The moment diagrams due to the serial loading of each 
span with a temporary load are shown in Figures 11.14, d–g. 

The maximum and minimum bending moments in the beam cross-
sections are determined by the expressions: 

 

max const tempM M M   ;     min const tempM M M   , 

 
where constM  is the bending moment in the given cross-section due to 
the constant load;  

tempM   is a positive bending moment in the given cross-section 

due to temporary loads in a corresponding span; 

tempM   is a negative bending moment in the given cross-section 

due to temporary loads in a corresponding span. 
 

For example, 7max 34.03 33.63 0.90 68.56M      kNm; 

 10max 44.03 2.26 2.64 39.13M        kNm; 

 1min 21.04 24.39 1.02 46.45M        kNm; 

 11min 5.99 10.9 4.28 9.19M       kNm. 
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Figure 11.14 
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Connecting by the smooth curve the points corresponding to the val-
ues of max ,M  we obtain the enveloping diagram of the maximum mo-
ments (Figure 11.14, h). The enveloping diagram of the minimum mo-
ments corresponds to the values of min .M  

From the constructed graphs it follows that in some parts of the beam 
the stretched fibers of the beam are located only below (or only at the 
top), and in other parts, the stretched fibers can be located both below 
and above. In the cross-section 11 11max 15.24M   kNm (not shown in 

Figure 11.14), and 11min 9.19M    kNm. 
Information about the distribution of calculated efforts is used in the 

design of beams. 
A similar approach to the construction of enveloping diagrams of 

bending moments, shear and longitudinal forces can be applied in the 
calculation of other structures. 

 
11.5. Calculating Continuous Beams on Elastic Supports 

 
Examples of elastic supports are long columns, on which a continu-

ous beam rests (Figure 11.15, a), transverse beams of the carriageway of 
a metal bridge, on which longitudinal continuous beams rest, as well as 
pontoons, which serve as supports of the floating bridge. 

 

 
 

Figure 11.15 
 

In the design scheme of the beam, such supports are depicted in the 
form of springs (Figure 11.15, b). If the elastic supports are linearly de-
formable, then the displacements of the support points of the beam are 
proportional to the reactions of the supports: 
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m m my c R , 
 

where mc  – is the pliability coefficient of the m-th support, m/kN. 
Calculation of continuous beams on elastic supports is conveniently 

performed by the force method. The primary system of the force method 
is accepted the same as in the calculation of beams on non-deformable 
(absolutely rigid) support rods. A fragment of the primary system of a 
multi-span continuous beam is shown in Figure 11.16, a. Emphasizing 
the physical meaning of the primary unknowns of the force method, in 
practical calculations the notation iX  is replaced with iM . 

 

 

 
Figure 11.16 

 
Displacement in the direction of the unknown nM  (the angle of mu-

tual rotation of the cross-sections of the beams adjacent to the n-th sup-
port) will be caused only by the support moments 2nM  , 1nM  , nM , 
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1nM  , 2nM   and the load located in the spans 1nl  , nl , 1nl  , 2nl  , 
therefore, the corresponding canonical equation of the force method has 
the form: 

 

, 2 2 , 1 1

, 1 1 , 2 2 0.

n n n n n n nn n

n n n n n n nF

M M M

M M

   

   

     

     
 

 
It is called an equation of five moments. 
The deformed state of the primary system caused by Mn = 1 is shown 

in Figure 11.16, b. In Figures 11.16, c the moments diagram and the val-
ues of the support reactions due to Mn = 1 are presented. The moments 
diagram and the reactions due to Mn–2 = 1 are given in Figures 11.16, d.  

The coefficients and free terms of the equations are determined by the 
Mohr-Maxwell formula, taking into account the influence of bending 
moments in the beam and reactions in elastic supports: 

 

k
ik i m mi mk

M dx
M c R R

EJ
    , 

 

F
iF i m mi mF

M dx
M c R R

EJ
    , 

 
where ,i kM M  are the moments in the beam, respectively, due to Mi = 1 
and Mk = 1; 

FM  are the moments in the beam due to given load; 

,mi mkR R  are the reactions in the support m, respectively, due to 
Mi = 1 and Mk = 1; 

mFR  is the reaction in the support m due to given load; 

mc  – is the pliability coefficient of the m -th support. 
Influence lines for internal forces in beams on elastic supports, as in 

beams on absolutely rigid supports, are constructed by static and kine-
matic methods. 

 
 
 



351 

THEME 12. CALCULATING STATICALLY  
INDETERMINATE TRUSSES 

 
12.1. Types of Statically Indeterminate Trusses 

 
This chapter discusses the features of calculating trusses as articulat-

ed-rod systems with extra connections (with redundant links). It is essen-
tial to remember that the nodal joints of the hinge-rod systems are ideal 
hinges without friction. 

The degree of static indeterminacy of the hinge-rod system is deter-
mined by the formula 

 
2 ,B L N     

 
where B  is the number of rods making up the truss;  

L  – the number of support rods of the truss; 
N  – the number of truss nodes. 

Examples of several types of statically indeterminate trusses are 
shown below (Figures 12.1. and 12.2, a). 

A three-span continuous beam truss with parallel chords and a trian-
gular lattice (Figure 12.1, a) is twice externally statically indeterminate. 
After being detached from the supports, this truss has a geometrically 
unchangeable statically determinate structure. 

 

 
 

Figure 12.1 
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The seven-panel beam truss with a crossed lattice (Figure 12.1, b) 
contains seven extra links. This truss is internally statically indetermi-
nate. Externally, it is statically determinate: the reactions of its supports 
can be found from the equilibrium equations, as in a simple beam.  

A beam truss with parallel chords, with a triangular lattice and addi-
tional struts, but strengthened with a polygonal tie (Figure 12.1, c), is 
also internally statically indeterminate once. 

A thrusting two-hinged truss with an additional brace in the central 
panel (Figure 12.2, a) is statically indeterminable both externally and 
internally. 
 

12.2. Features of Calculating Statically Indeterminate Trusses 
 

The calculation of statically indeterminate trusses is performed, as a 
rule, by the force method. The primary system of the force method  
is selected by cutting the truss rods, or by removing the support links  
(Figure 12.2, b), which are not absolutely necessary. 
 

 
 

Figure 12.2 
 

The canonical equations of the force method have standard form 
 

11 12 1 1 1

21 22 2 2 2

1 2

...

0,
... ... ... ... ... ...

...

n F

n F

n n nn n nF

X

X

X

        
              
     
             

 

 

where the index n means the number of primary unknowns of the forces 
method. 

With a nodal load in the rods of statically indeterminate trusses, as 
well as other hinged-rod systems, only longitudinal internal forces will 
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arise. Therefore, the displacements in the trusses will depend only on the 
longitudinal deformations of their rods, and the one-term Maxwell for-
mula should be used to calculate the displacements.  

Consequently 
 

; ( , 1, 2,..., )i k i F
ik iF

sN N sN N
i k n

EA EA
        

 

where the summation sign ∑ extends to all the truss rods;  
, ,i k FN N N  – accordingly, the efforts in the rods of the primary 

system of the method of forces due to unit values of the primary un-
knowns ( 1, 1)i kX X   and the given load ;F  

s  and EA  – length and tensile-compression rigidity of the corre-
sponding truss rod. 

The final effort in the rods of statically indeterminate truss is calcu-
lated by the formula 

 

1
.

n

F i i
i

N N N X


    

 

All calculations are conveniently carried out in a tabular form. For a 
truss with two primary unknowns (Figure 12.2), such a table can have 
the following form (Table 12.1). 
 

Table 12.1 
 

№
№

 r
od

s 

b=
s/

(E
A

) 

NF N1 N2 

N
1 

N
1b

 

N
1 

N
2b

 

N
2 

N
2b

 

N
1 

N
F
b 

N
2 

N
F
b 

N
1 

X
1 

N
2 

X
2 

N
 

1 2 3 4 5 6 7 8 9 12 11 12 13 

1             

 
                     

∑     δ11 δ12 δ22 ∆1F ∆2F    
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The first column of the table shows the rod numbers in a selected or-
der. The second column contains the deformability of the rods, i.e. the 
ratio of the lengths of the rods to their longitudinal rigidity. The third, 
fourth and fifth columns contain the internal forces in the truss rods, cal-
culated in the primary system of the force method due to the given load 
and unit values of the primary unknowns.  

In the next five columns, the actual calculations are performed, the 
meanings of which are indicated in the header of the table. The sums of 
the elements of the columns 6,...,10 give the values of the coefficients at 
primary unknowns and the values of the free terms of the canonical 
equations of the force method, i. e. the displacements from unit un-
knowns and the displacements from given load in the primary system.  

After the values of the basic unknowns are determined from the solu-
tion of the system of canonical equations, columns 11 and 12 are filled 
in. In other words, the actual values of the efforts in the primary system 
are calculated by the found values of the primary unknowns. 

Finally, summing columns 3, 11 and 12, the final values of the inter-
nal forces in the rods of a statically indeterminate truss are obtained. If 
necessary, additional columns can be added to the table for intermediate 
and final kinematic checks in accordance with the force method. 

Calculation of trusses by the displacement method leads to a signifi-
cantly larger number of primary unknowns. As a rule, the displacement 
method is used in the automated calculation of trusses using computers. 
 

12.3. Constructing Influence Lines for Efforts in Truss Rods 
 

The influence lines are used to calculate trusses under the action of a 
moving load to determine its most unfavorable location. Based on the 
theorem on the reciprocity of reactions and displacements (the kinematic 
method of constructing influence lines), the influence line for the internal 
force in any rod (link) of a statically indeterminate truss coincides with 
the deflection line of the loaded chord of the truss caused by the action of 
a unit displacement in the direction of this internal force (in the direction 
of the corresponding link). 

The process of constructing the influence line for the effort in a cer-
tain rod (link) of a statically indeterminate truss can be carried out 
somewhat differently, based on the theorem on reciprocity of displace-
ments. To build the influence line for the effort in a truss rod, it is neces-
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sary to cut this rod (remove the corresponding link). The degree of static 
indeterminacy of the truss is reduced by one. A truss with a removed link 
can be considered as the primary system of the force method, in the gen-
eral case, statically indeterminate. The primary unknown, the reaction in 
the removed constraint, depends on the point of application of the mobile 
force equaled to one. The law of change of this primary unknown deter-
mines the desired line of influence. 

From the corresponding canonical equation it may be found that: 
 

1 1
1

11 11

( ) ( )
. F Fx x

Inf Line of X
 

 
 

 

 

where 11  is the displacement in the primary system in the direction of 
the removed constraint from the unit value of the force in this constraint, 
that is constant quantity; 

1 ( )F x  is the displacement in the primary system in the direction 
of removed constraint from the unit force and is the function of argument 
x that is the abscissa of the point of application of the mobile unit force; 

1( )F x  is a function of the same argument x, but which expresses 
displacements in the direction of the mobile force from the unit value of 
the immobile primary unknown 1 1X  , i.e. is a diagram of displace-
ments (is a diagram of deflections of the chord that will be loaded) in the 
truss with the removed link due to unit value of the force in this link. 

Thus, in order to construct a line of influence of a certain effort in a 
statically indeterminate truss, it is necessary to remove the member per-
ceiving this effort. Then a unit force is applied to the truss with the re-
moved link in the direction of this link. The applied unit force causes the 
deflections of all nodes of the chord that will be loaded by vertical mo-
bile unit force. The diagram of the displacements of this chord should be 
constructed (deflection line). The displacement 11  in the direction of 
the removed link should also be calculated. Usually last displacement is 
non-zero and positive. Consequently, the ordinates of the deflection line, 
reduced by 11  of time, are the ordinates of the desired line of influence. 

When using computer technology, the influence line for any effort 
can be built by its direct definition, as a result of the multiple calculation 
of this effort from the action of a single vertical force equaled to one and 
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applied alternately to each nodes of the chord on which the unit force 
will move. 

If, in one way or another, the influence lines for forces are construct-
ed in all the redundant links of a statically indeterminate truss  

 
( . , ( 1,..., )),kInf Line X k n  

 

then the line of the influence for effort in any other rod ( . )jInf Line N  
can be constructed using a simple formula: 
 

0
1

. . ( . )
n

j j j
kk

k
Inf Line N Inf LineN N Inf LineX


   , 

 

where 0. jInf Line N  is the influence line of the force in question in the 

primary system of the force method with n    removed links; 
j

kN  is the force in the considered rod in the primary system of the 

force method from a unit unknown 1kX  . 
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THEME 13. CALCULATING STATICALLY INDETERMINATE 
ARCHES, SUSPENSION AND COMBINED SYSTEMS 

 
13.1. Kinds of Statically Indeterminate Arches 

 
The following types of statically indeterminate arches are most com-

monly used in construction practice: two-hinged arches, single-hinged 
arches and hingeless arches. 

The two-hinged arch (Figure 13.1, a) is characterized by two im-
movable hinged supports. The single-hinged arch (Figure 13.1, b) con-
tains, as a rule, one hinge in the middle of arch span. The hingeless arch 
(Figure 13.1, c) represents a continuous curved bar, absolutely rigidly 
supported at the ends. 

From the point of view of static indeterminacy, a two-hinged arch has 
one “extra” link, a single-hinged arch is twice statically indeterminate, 
and a hingeless arch is three times statically indeterminate.  

 

 
 

Figure 13.1 
 

As a rule, according to the outline, the arches are symmetrical. De-
pending on the nature of the load, the axis of the arch can be outlined 
along a square parabola, along an arc of a circle or other curve, and can 
be polyline. The cross section of the arch can be either constant or varia-
ble along the length of the arch. 

All types of arches are thrusting systems, i. e. when a vertical load is 
applied to an arch, horizontal reactions also arise in its supports. 
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Therefore, arches require the creation of powerful supporting devices. 
Arches with ties are used in order not to transmit significant horizontal 
forces to the underlying structures. Typically, ties of different designs are 
arranged in two-hinged arches (Figure 13.2). A two-hinged arch with a 
tie retains the properties of thrust systems, has supports as a simple 
beam. Therefore, it transfers only vertical forces from a vertical load to 
the underlying supporting structures and can be located on tall columns 
or walls without the use of special buttresses 

 

 
 

Figure 13.2 
 

The features of calculating once statically indeterminate arches will be 
considered using the example of calculating a two-hinged arch with a tie. 

 
13.2. Calculation of a Two-Hinged Arch with a Tie 

 
The two-hinged arch with a tie is outwardly non-thrusting. The thrust 

is perceived by a tie, and should be considered as an internal tensile force 
in the tie. A two-hinged arch with a tie has only one redundant link and 
may be easy calculated by the force method. 

Let us consider a two-hinged arch with a straight tie located at the 
level of the supports. The arch has a cross sectional area that may be var-
iable along the span. The arch is loaded with a vertical load (Figure 13.3, 
a). The primary system of the force method can be obtained by dissect-
ing the tie (more precisely, removing from the tie a link that perceives 
longitudinal force). The primary unknown of the force method will be 
the internal tensile force in the tie 1tieN X  (Figure 13.3, b). 

The canonical equation of the force method has the form 
 

11 1 1 0FX    , 
 

where 11  is the mutual displacement of the ends of the tie in the cut, 

caused by the unit effort in the tie ,  the mutual displace-
ment of the ends of the cut tie from external loads. 

11 X  F1
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Figure 13.3 
 
When calculating displacements in the primary system, only the 

bending deformations of the arch and the longitudinal deformations  
of the tie may be taken into account. Longitudinal and shear defor-
mations in the arch are as a rule neglected. This assumption is valid  
for arches with a ratio of the arch rise to arch span approximately equal 
to f / L = 1/6 ÷ 1/4.  

When the tie is cut, the primary arch system is a curved beam. The 
load applied to the arch causes bending moments only in the arch as in a 

curved beam 0
F xM M  (Figure 13.3, c). The load does not cause inter-

nal forces in the cut tie. 
The unit primary unknown 1 1X   causes bending moments in the 

arch 1 ( )M y x  . The unit diagram of bending moments repeats the out-
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line of the axis of the arch (Figure 13.3, d). The unit primary unknown 
causes the constant tensile longitudinal force 1tieN   in the tie (Figu- 
re 13.3, e). 

The main feature of calculating arches is that the Mohr integrals for 
calculating displacements in arches must be taken along the length of the 
axis of the arch, i.e. they are curvilinear integrals. The free term of the 
canonical equation is found by the one-term Mohr formula 

 

1
1

( )

( ) ( )
F F

F
S S

M M ds y x M ds

EJ x EJ x
     . 

 
The coefficient at the primary unknown (the unit displacement), cal-

culated taking into account the longitudinal deformation of the tie, is 
found by the two-term formula 

 
2 2

1 1
11

[ ( )]

( ) ( )
tie

tie tieS S

M M ds N L y x ds L

EJ x EA EJ x EA
      . 

 
To go to the integration over the span, i.e., over the abscissa x, in the-

se curvilinear integrals, it is necessary to introduce the replacement 
 

,
cos ( )

dx
ds

x



 

 
where ( )х  is the angle of inclination to the horizontal of the tangent to 
the axis of the arch in cross section with the abscissa x. As a result, the 
following formulas are obtained to calculate the coefficient and the free 
term of the canonical equation of the force method: 
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Thus, the calculation of displacements in arches, as well as in other 
curvilinear bars of variable section, is much more time-consuming than the 
calculation of displacements in rectilinear bars of constant section. The 
calculation of definite integrals according to the rule of multiplying dia-
grams (according to the Vereshchagin rule) is not feasible here, since un-
der the signs of the definite integrals there is a product of several nonlinear 
functions. The Simpson formula should be considered as one of the op-
tions for the approximate (numerical) calculation of the definite integrals. 

Taking into account the above assumptions about neglecting longitu-
dinal and shear deformations of the arch, it is permissible to use a sim-
pler method of numerical integration to calculate displacements in the 
arch. This is the rectangle method. For this purpose, the span of the arch 
is divided into sufficiently small sections, preferably of the same length. 
They are numbered in a certain sequence, and in the middle point of each 
section, the values of all integrand functions are calculated. As a result, 
the procedure for taking a definite integral is replaced by calculating  
the final sum of the products of the integrands values in the middle of  
the sections: 

 

2

11
1 cos

n
k k

k k k tie

y x L
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where k is the section number, n is the amount of sections. Typically, all 
calculations are carried out in tables (Table. 13.1). 

 

Table 13.1 
 

№ of 
section 

k 
xk yk EJk cosk (MF)k xk 

1 2 3 4 5 6 7 8 9
… 
… 
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The sum of the elements of the penultimate column gives the part of 
the unit displacement due to the bending deformations of the arch. The 
complete unit displacement is found as the sum 

 

( )
11 11

M

tie

L

EA
    . 

 

The tie internal force is found from the solution of the canonical 
equation  

 

1
1

11

F
tieN X


 


, 

 

Internal forces in any section of a two-hinged arch can be found using 
the same formulas as in a three-hinged arch 

 

; 
 

; 
 

. 
 

The index x in these formulas denotes an arbitrary cross section of  
the arch. 

 
13.3. Influence of the Tie Longitudinal Rigidity 

on the Tie Internal Force 
 
In statically indeterminate systems, the distribution of internal forces 

between elements depends on the ratio of their rigidity Therefore, tie 
deformability (the magnitude / ( )tiel EA ) will affect the value of the tie 
internal force. The formula obtained above for calculating the tie force 
can be rewritten as follows: 
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A graphical representation of the dependence of the tie rigidity on the 
tie force is given in Figure 13.4. 

 

 
 

Figure 13.4 
 

If you gradually reduce the tie longitudinal rigidity, the value tieEA , 
then the tie force will decrease. The weaker the tie, the smaller force it 
perceives. In the limit, with a tie of zero rigidity, i.e. in the absence of it, 
the arch with a tie turns into a simple curved beam; tie force is zero. 

On the other hand, if the tie longitudinal rigidity is gradually in-
creased, the tie force is also increased, but to a much lesser extent. In the 
limit, when the tie rigidity tends to infinity the tie force will asymptoti-
cally tend to 

 

, 

 
where H is a quantity numerically equal to the thrust of a two-hinged arch 
without a tie on hinged immovable supports (Figure 13.1, a). 

That is, in this limiting case, when the tie is absolutely inextensible, the 
two-hinged arch with the tie turns into a two-hinged arch on hinged immov-
able supports, as it were, into an ordinary two-hinged arch. Thus, the rela-
tively weak tie does not allow using all the advantages of the arch with the 
tie as a thrust system.  

In contrast, an overly rigid tie is practically useless. The magnitude of the 
force in a rigid tie cannot exceed the magnitude of the thrust in the ordinary 
two-hinged arch, calculated by the last formula.  

When calculating double-hinged arches without a tie, the thrust is al-
so taken as the primary unknown 1( ).H X  The primary system of the 

)(
11

1
M

FH


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force method is obtained by discarding the horizontal support link of one 
of the supports. The diagram of bending moments due to the primary 
unknown equal to one and the diagram of load bending moments in the 
primary system of a two-hinged arch without a tie are the same as for an 
arch with a tie (Figure 13.3, c, d). The thrust of a two-hinged arch with-
out a tie is calculated by the formula 

 

. 

 
13.4. Hingeless Arches. Features of Calculation 

 
A hingeless arch is three times statically indeterminate. To determine the 

three primary unknowns of the force method, it is necessary to compose and 
solve three canonical equations. By the appropriate choice of a rational pri-
mary system of the method of forces, one can even achieve complete sepa-
ration of the system of canonical equations into three separate equations, 
each with one unknown only. This takes place with an arbitrary outline of 
the axis of the arch and an arbitrary load. Variants of the primary systems 
shown in Figure 13.5, a, b, c, allow you to reset to zero the secondary coef-
ficients of the canonical equations and bring the equations to the form: 

 
; 

 

; 
 

. 

 
Such a result can be obtained at the cost of additional calculations to 

determine the length of the hard consoles (Figure 13.5, a, b). So, for ex-
ample, in a symmetric arch (Figure 13.5, b), the primary unknown 1X  is 
skew-symmetric and is separated from two other direct-symmetric un-
knowns 2X  and 3X . The direct-symmetric primary unknowns can be 
separated by selecting the length of absolutely rigid consoles so that the 
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displacements 23 32    are zero. The point at which the ends of abso-
lutely rigid consoles are located is called the elastic center of the arch. A 
complete separation of the primary unknowns can also be achieved by 
placing the end of a single console in the elastic center (Figure 13.5, a).  

The same result can be obtained with the primary system in the form 
of a three-hinged arch (Figure 13.5, c), grouping the primary unknowns 

1X  and 3X , and determining the position of the extreme hinges from the 
conditions so that the secondary coefficients of the canonical equations 
of the force method vanish. 

However, in the age of electronic calculators and computers, solving 
systems of linear algebraic equations of the second-third order does not 
present any difficulties. Therefore, you can abandon the choice of the 
singular primary systems and additional calculations. 

 

 
 

Figure 13.5 

 
So the primary system, obtained by cross-cut of the hingeless arch by 

the axis of symmetry (Figure 13.5, d), allows you to divide immediately 
three joint canonical equations into one independent equation relative to 
the skew-symmetric primary unknown 1X  and into a system of two joint 

equations relative to two symmetric primary unknowns 2X  and 3:X  
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The primary system in the form of a curved beam leads to the same 
results (Figure 13.6, b). Let us consider this option in more detail, since 
the techniques for constructing a series of diagrams of internal forces in 
such a primary system have already been reflected in the calculation of 
two-hinged and three-hinged arches. 

 

 
 

Figure 13.6 
 

We group the unknown support moments, decomposing them into a 
skew-symmetric group unknown 1X  and a symmetric group unknown 

2X . The primary unknown 1 1X   will cause a linear skew-symmetric 
diagram of bending moments in the curved beam (Figure 13.6, c). The 
ordinates of this unit diagram can be calculated in the usual coordinate 
system with the origin on the left support according to the equation 

 

1( ) 1 2 / .M x x L   

 
The unknown  2 1X   will cause constant positive bending moments 

in the curved beam (Figure 13.6, d). In the primary system, the unknown 

3 1X   will cause a symmetric diagram of bending moments with nega-
tive ordinates, which coincides with the outline of the axis of the  
arch (Figure 13.6, e). The load diagram of bending moments in the pri-
mary system coincides with the beam diagram of bending moments 
(Figure 13.6, f). 
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The curvilinear integrals along the length of the arch, determining the 
coefficients and free terms of the canonical equations, are calculated ac-
cording to the rule of rectangles, dividing the arch span into n sections. 
In view of the notation introduced above, we accordingly obtain: 

 

;       ; 

 

;       ; 

 

;       ; 

 

. 

 
In the above formulas, the index k denotes the section number when 

calculating the Mohr integrals according to the rectangle rule. The values 
of the integrands are usually calculated in the middle of the sections. 

After determining the primary unknowns from the solution of the ca-
nonical equations, one can determine the internal forces in any cross sec-
tion of the hingeless arch just like in three-hinged and two-hinged arches. 
The primary unknown 1X  causes vertical support reactions in the prima-
ry system 

 

1 12 ;AV X L          1 12 .BV X L  
 

In the primary system the primary unknown 2X  does not cause sup-

port reactions. The primary unknown 3X  causes only the horizontal re-
action in the primary system 
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Therefore, to calculate the internal forces in an arbitrary cross section 
x of a hingeless arch, we will have the following formulas: 

 

; 
 

; 
 

. 

 
13.5. Calculating Combined and Suspension Statically  

Indeterminate Systems  
 

Remember that design schemes of structures are called combined sys-
tems in which some of the bars work on bending, and the rest only on 
compression-tension. Bars that work on bending usually have a more 
powerful cross-section and are called rigid members. Rods that accept 
only compressive or, especially, tensile forces are lighter. They are 
called flexible elements. Some statically determinate combined systems 
were considered above in the sixth topic. The types of statically indeter-
minate combined systems are practically immense. 

All types of arches with ties can be attributed to combined systems. 
An arch itself is a rigid element. Tie elements are flexible members. 

Examples of some other statically indeterminate combined systems 
are shown in Figure 13.8. 

 

 
 

Figure 13.8 
 

Suspension systems are those systems whose main load supporting 
elements work in tension. Suspension systems include hanging arches 

321
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(Figure 13.9, a), various cable-stayed and pure cable systems of bridges, 
roofs and others constructions (Figure 13.9, b, c, d). Many combined 
systems can also be attributed to suspension systems (Figure 13.8, b, c). 

The calculation of a hanging (stretched) two-hinged arch (Figu- 
re 13.9, a) differs from the calculation of an ordinary (compressed) two-
hinged arch only in the fact that the thrust of the hanging arch is directed 
outward from the span. If the hanging arch is made of flexible elements 
(cables, ropes), then it turns into a flexible thread (Figure 13.9, c). The 
calculation of flexible threads, as well as other hanging, cable-stayed and 
combined systems of large spans, is carried out in a nonlinear formula-
tion according to the deformed design scheme. In this section, we con-
sider the features of calculation of some combined systems (including 
suspension) in the classical linear formulation according to an unde-
formed design scheme. 

The beams with two-post hinged chain (Figure 13.8, a) and with mul-
ti-post hinged chain (Figure 13.8, c) are examples of combined systems 
with one redundant link. A suspension bridge in the form of a chain with 
a continuous stiffening beam (Figure 13.8, b) is three times statically 
indeterminate. A truss with a continuous upper chord (Figure 13.8, d) 
contains four redundant links.  

 

 
 

Figure 13.9 
 

The cable-stayed combined system (Figure 13.9, b) with a continuous 
beam and two cables is statically indeterminate once, provided the cables 
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do not turn off from work. The cable truss (Figure 13.9, d) is statically 
indeterminate three times. Such trusses must be pre-tensioned so that all 
their elements are not switched off. Under this condition, the calculation 
of cable trusses does not differ from the calculation of the usual statically 
indeterminate trusses considered above. 

Calculation of combined systems of small and medium spans with a 
small number of primary unknowns can be performed by the method of 
forces according to an undeformed design scheme. It is recommended to 
choose the primary system of the force method for combined systems so 
that internal forces from a given load arise only in its rigid elements. 
This is possible if the entire load is applied to the rigid elements. Figu- 
re 13.10 shows options of the primary systems of the force method for 
two combined systems. The given load and the unit values of primary 
unknowns cause the bending moments only in their rigid elements. The 
primary unknowns also cause longitudinal efforts in flexible elements. 
But there will be no internal forces in the flexible elements of such pri-
mary systems from external loads.  

 

 
 

Figure 13.10 
 
The coefficients at the unknowns and the free terms of the canonical 

equations of the force method in combined systems are calculated by the 
two-term Maxwell-Mohr formulas: 
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; 

 

. 

 
Practically due to the large difference in the cross-sectional areas of 

flexible and rigid elements, the summation in the second term of the 
above formulas applies only to flexible elements: corrections to dis-
placements due to longitudinal deformations of rigid elements are ob-
tained insignificant. 
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THEME 14. GENERAL EQUATIONS OF STRUCTURAL 
MECHANICS FOR BARS SYSTEMS 

 
14.1. Concept of the Discrete Physical Model 

 
The design schemes of bars systems, used in the classical methods of 

their analysis, have a pronounced continuity property. They are repre-
sented in the form of interconnected one-dimensional elements (bars), 
while the nodes are interpreted as the points at which the bars are joined 
or on which constreints (links) are superimposed. As a result of analys-
ing the system for given exposures, dependencies are established. They 
describe the nature of the change in the internal forces and displacements 
along the axis of each bar. Information in this form about the stress-
deformation state of the system is redundant for practical tasks. In the 
course of calculations, it is enough to find the internal forces or dis-
placements only in a number of characteristic cross sections and then the 
forces or displacements can be found in any intermediate section of the 
bar, if necessary. 

Design sections are usually assigned at the junction of the bars to the 
nodes; they separate the bars from the nodes. As a result, the design 
scheme of the investigated structure seems to be composed of bars and 
nodes. This scheme is called the discrete physical model of the structure. 
For example, the discrete model of the design schemes of a frame (Fi-
gure 14.1, a) is shown in Figure 14.1, b. 

Each rigid node of a discrete model of a plane structure has three de-
grees of freedom (linear displacements along the coordinate axes and 
rotation angle), each hinged one has two degrees of freedom (linear dis-
placements along the coordinate axes). The position of the nodes of the 
system determines the position of its bars. Therefore, the degree of free-
dom of a certain system is defined by the number of degrees of freedom 
of all its nodes. 

In this chapter the degree of freedom of the system will be denoted 
through m . It is precisely the number of independent equations of equi-
librium that can be compiled for all nodes of the system. 

For plane trusses m is equal to twice the number of nodes minus the 
number of support rods, and the number of unknown internal forces n  is 
equal to the number of truss rods. Using the notation introduced, the  
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degree of static indeterminacy of the system k  can be calculated by the 
expression 

 

k n m  .                                     (14.1) 
 

 
 

Figure 14.1 
 

In chapter 8, the degree of static indeterminacy of the system was de-
noted by   (the number of redundant links), in chapter 9, the degree of 
kinematic indeterminacy (it is also the degree of freedom) of the system 
was denoted by .n   

In this chapter, the degree of static indeterminacy is denoted by ,k  
and the degree of kinematic indeterminacy is denoted by .m  The number 
of unknown efforts is indicated through .n  

The degree of freedom of a structural node also determines the di-
mension of the displacement vector of this node. The total number of 
components of the displacement vector of all nodes corresponds to the 
degree of kinematic indeterminacy of the system. Therefore, the relation 
(14.1) can be considered as the relationship between the degree of static 
indeterminacy k  and the degree of kinematic indeterminacy m  of the 
system. 
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Since any point of any bar can be declared a new node where two bars 
are joined. Therefore, for the same system, for example, a frame, several 
variants of its discrete model can be adopted. This means that the degree 
of freedom of a discrete model, in the general case, is a variable character-
istic. Even in this case, relation (14.1) allows one to correctly find the de-
gree of static indeterminacy of the system, since the number of unknown 
forces in each additional section coincides with the number of independent 
equilibrium equations that can be compiled for each additional node. 

 
14.2. Loads and Displacements 

 
To simplify the computational procedures, later in this section, the 

calculation of systems under only nodal forces effects will be considered. 
Techniques for replacing distributed load with concentrated forces are 

well known. The essence of the conversion is as follows. 
Initially, each element located between two adjacent nodes is consid-

ered as a bar with end (support) links corresponding to the type of a node 
(rigid or articulated). Calculating it as a single beam under local load, we 
can determine its support reactions and construct the diagrams of its ef-
forts. For this, table 9.1 can be used. 

Subsequently, having loaded the nodes of the design scheme of the 
system by forces equal in value and opposite in direction to the reactions 
of the single beams, we will calculate the system on action of these nodal 
forces. 

The final diagrams of the internal forces are obtained by summing the 
corresponding diagrams from the calculation of the system as a whole 
and of the individual elements. 

Figure 14.2 shows (symbolically) the transition from a system with 
distributed loads to a system with concentrated forces. 

External forces acting on a rigid node i  of a plane system are defined 
by a load vector in the form:  

 

, , .
i i

Tx y
i iF F F m   
  

 

 

Where ,
i i

x yF F


 are components of external load along the axes x  and 

;y  im  is a concentrated moment in i -th node. 



 

375 

 
 

Figure 14.2 
 

The rule of signs for the load: external forces are considered positive 
if their directions coincide with the directions of the corresponding coor-
dinate axes; positive moments are directed counterclockwise. 

The full load vector acting on the system is formed by sequential 
docking of the corresponding vectors for each node of the system: 

 

1 2 3 1, , ,..., , .
TT T T T T

p pF F F F F F   
     

 

 
The number of system nodes is denoted by .p  
Under the load, the system takes a new (deformed) position. Frame 

nodes move. 
The displacements of the rigid node “i” are characterized by a vector 
 

, , .
i i

Tx y
i iz z z   
  

 

 
The displacements of the articulated node “j” are characterized by a 

vector 
 

, .
j j

T
x y

jz z z    
  
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The full vector of displacements of the system nodes is represented as: 
 

1 2 3, , ,..., .
TT T T T

pz z z z z   
    

 

 

The vector of generalized displacements must correspond to the vec-
tor of generalized load. Dimensions of vectors F


 and z


 coincide. The 

scalar product of these vectors determines the work of external forces. 
Such vectors are called dual. 

 
14.3. Internal Forces (Efforts) and Deformations 

 
Generally, a bending moment ,M  a transverse force Q  and a longi-

tudinal force N  arise in the cross section of the bar. Together they form 
a vector of efforts (internal forces) in the section 

 

 , , .TS M Q N


 
 

The components of this vector must be determined. 
In special cases, this vector may contain two components, for example: 
 

 , TS M Q


    or     , .TS M N


 
 

In the first case, the longitudinal force is not included in the number 
of unknowns, and in the second case, the transverse force is. 

It is possible that only the bending moment can be an unknown factor 
in the cross section. Then: 

 

 S M


. 
 

Under the action of the nodal load on the system, the stress state of ith 
bar can be characterized by the vector: 

 

 , , , ,T
i i Bi Ei iS N M M Q


 
 

where iN  is longitudinal force in the bar; 

BiM  – bending moment at the beginning of the bar; 
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EiM  – bending moment at the end of the bar; 

iQ  – transverse force in the bar. 
Since the load does not act directly on the rod, the transverse force 

along its length does not change and, as is known (8.17), is calculated by 
the formula:  

 

E BM M
Q

l


 . 

 

Therefore, having saved the first three components in the vector iS


, 
we rewrite it in the form: 

 

 , , .T
i i Bi EiS N M M


 

 
Each type of effort corresponds to a certain deformation. The longi-

tudinal force causes elongation or shortening of the element, bending 
moments – rotations of the cross sections, transverse forces – mutual 
shear of the cross sections. 

The deformation vector i


 corresponding to the effort vector iS


 will 
have the form: 

 

 , , ,T
i i Bi Eil    


 

 
where il  is linear deformation of an element; 

,Bi Ei   are the angles of rotation of the cross sections at be-
ginning and at end of the bar relative to the straight line which connectes 
the nodes in the deformed state. 

The vector of efforts S


 and deformation vectors 


 for the entire sys-
tem, as well as the vectors F


 and z


, are formed by sequential joining of 

the efforts and deformation vectors for individual bars. 

The vectors S


and


 are dual; their scalar product gives the work of 
internal forces. 

For a spatial system, the force vector in the cross section is, as a rule, 
six-dimensional. 
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14.4. Equilibrium Equations 
 

Let us consider an arbitrary, for example, statically indeterminate 
frame (Figure 14.1, a), which is in equilibrium under the action of a giv-
en load. The corresponding discrete model in the form of a set of nodes 
and bars is shown in Figure 14.1, b. 

We compose the equilibrium equations for the 2d node of the frame: 
 

1 2 2

1 2 2

2 1 2 2

0, 0,

0, 0,

0, 0.

E B x

E B y

E B

x N Q F

y Q N F

M M M F 

    

    

    





  

 

The written down three equations contain six unknown efforts. 
Consider the equilibrium of the frame bars. Each of them is under the 

action of the end forces shown in the same figure. 
Composing the three equilibrium equations for the first bar, we obtain: 
 

1 1 1

1 1 1

1 1
1 1 1 1 1

1

0, ,

0, ,

0, 0, .

B E

B E

E B
B E B E

x N N N

y Q Q Q

M M
M Q l M M Q

l

  
  


    






  

 

Similar relations can be obtained for the second bar, that is: 
 

2 2
2 2 2 2 2 2 2

2

, , E B
B E B E

M M
N N N Q Q Q Q

l


     . 

 

Substituting the expressions of efforts from the equations of equilib-
rium of the bars into the equations of equilibrium of the nodes, after 
simple transformations we get: 
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The matrix form of this system of equations will be as follows: 
 

 
 

or abbreviated: 
 

* 0A S F 
 

.                                     (14.2) 
 

In equations (14.2), the signs of the components of the vector F


  
correspond to the accepted positive directions of the nodal loads. To nu-
merically solve these equations, together with others, we rewrite them in 
the form: 

 

,AS F
 

                                         (14.3) 
 

where *A A   is equilibrium matrix: 
 

 
 

 
 

is the vector of effort; 
 

 
 

is the vector of loads. 
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To easily navigate in the structure of matrix A , we remember that in 
its first line there are the coefficients at unknown efforts in the end sec-
tions of the bars from the equilibrium equation 0.X   In the second - 
from the equation 0,Y   and in the third from the equation 2 0.M   

Moreover, in the first three columns of the matrix, the coefficients are 
recorded for the efforts , ,B EN M M  in the first bar, i.e. in the bar 1–2, 
and in the next three columns for the corresponding efforts in the second 
bar (in the bar 2–3).  

The shown method of forming the equilibrium matrix is called the 
matrix forming method “by nodes”. For frames with a large number of 
nodes, it is laborious and therefore is not often used in practice. Another, 
more effective method, which allows to organize the formation of a ma-
trix “by bars”, will be described in section 14.14. 

 
14.5. Geometric Equations 

 
Let us imagine the process of “transition" of a frame (Figure 14.3) to 

a deformed state as a result of the successive influence of first longitudi-
nal deformations of its elements, and then bending deformations. The 
first stage of deformation is equivalent to loading of the corresponding 
hinged system by nodal forces, which cause the same values of the inter-
nal longitudinal forces. Then, with the positions of the nodes at points 1, 
2  and 3, bending moments are applied which transfare the bars into a 
curved state. According to the assumption of small displacements, the 
second stage of deformation does not change the position of the frame 
nodes. Therefore, the deformation of each bar fixed at the ends can be 
characterized by three components: 

il  is an absolute elongation (shortening) of the ith bar, 

,Bi Ei   are angles of rotation of the end sections. 
Consequently, the strain vectors of the 1st and 2nd bars of the frame 

(Figure 14.3) have the form: 
 

 1 1 1 1, , ,B El     


 
 

 2 2 2 2, , .B El     

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Figure 14.3 
 

Moreover, as follows from Figure 14.3, in which all components of 
the displacement vector of the 2nd node are shown as positive, the fol-
lowing relations are true: 

 

2
1

1

,B
z

l
        2

1 3
1

,E
z

z
l

    

 

1
2 3

2

,B
z

z
l

          1
2

2

.E
z

l
   

 

Note. In the expression for 2B  the angle is taken as negative, be-

cause the direction of the rotation angle 2B  does not coincide with the 
direction of the positive moment at the beginning of the 2nd bar. 

Due to the smallness of the deformations, we can assume that 

1 1l z   and 2 2.l z   
The written relations allow us to establish the relationship between 

the strain vector 


 and the displacement vector z


 in matrix form: 
 

1

1 1
1

1 1
2

2
3

2 2

2 2

1 0 0

0 1 0

0 1 1

0 1 0

1 0 1

1 0 0

B

E

B

E

l

l
z

l
z

l
z

l

l

   
        
                       
   
   

. 
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Comparing with (14.3), we see that the transformation matrix is 
transposed with respect to the equilibrium matrix. Hence we can write: 

 

,TA z 
 

                                        (14.4) 
 

These equations are called geometric equations. They are the equa-
tions of continuity of deformations of the bars system. 

The matrix TA  is called the deformation matrix. With its help, de-
formations of system elements are calculated through displacements of 
nodes. 

So that the reader does not have an opinion that the deformation ma-
trix for the considered example turned out to coincide accidentally with 
the transposed equilibrium matrix, we study the question of the relation-
ship of these matrices in more detail. 

 
14.6. Duality Principle 

 
The equilibrium equations were compiled for the undeformed state of 

the system, that is, under the assumption of small deformations of its 
elements, causing small displacements of nodes. 

Due to this assumption, the equilibrium equations and geometric 
equations turned out to be linear. Systems to which this assumption ap-
plies are called geometrically linear. 

An important property of equations is that the matrices of equilibrium 
equations and geometric equations are mutually transposed. This rela-
tionship can be shown in general terms. Let, for example, between vec-

tors z


and 


 there is dependence in the form: 
 

1 .A z  


 
 

In accordance with the virtual displacement principle for a system in 
equilibrium, the sum of the virtual works of external and internal forces 
is zero. Actual displacements can be considered as a special case of vir-
tual. In this case: 

 

0.T TF z S  


                                  (14.5) 
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Substituting  
 

T T TF S A  and 1 ,A z 
 

 
 

into the equations (14.5), we will have  
 

1 0,T T TS A z S A z  
 

 

which implies the equality 

1 .TA A  
 

The obtained dependence is common for linear systems and expresses 
a static-geometric analogy of the calculated relations. 

In the case of large displacements, the problem of determining the 
stress-strain state becomes nonlinear. Systems in which large displace-
ments and small deformations take place, together with the correspond-
ing problems are called geometrically nonlinear. An example of geomet-
rically nonlinear systems can be some cable-stayed systems. For these 
systems, equilibrium equations are compiled for their deformed state 
taking into account nodal displacements. The matrix A  of equilibrium 
equations will depend on the displacements ,z  the matrix 1A  of geomet-
ric equations will also be dependent on ,z  but 

 

   1 .
T

A z A z    
 

The static-geometric analogy for geometrically non-linear problems 
appears in a more complex form. Its consideration is beyond the scope of 
this tutorial. 

In the following presentation of the theory of calculating bars sys-
tems, geometrically linear systems are considered. 

 
14.7. Physical Equations 

 
The relationship between the strain vector and the force vector for an 

individual bar is established linear: 
 

i i iD S 
 

. 
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Recall that: 
 

 , , ,
T

i i Bi Eil    


       , , .
T

i i Bi EiS N M M


 

 
To determine the component ,Bi  one should consider loading the 

bar with the end moments BiM  and EiM  (load state) and loading with a 
unit moment at the beginning of the bar (Figure 14.4). “Multiplying" the 
diagrams, we get: 

 

   
2

.
6 6Bi Bi Ei

i i

l l
M M

EJ EJ
    

 
Similar reasoning will allow us to write the expression: 

 

   
2

.
6 6Ei Bi Ei

i i

l l
M M

EJ EJ
    

 

 
 

Figure 14.4 
 

Given that the compliance of the bar from the longitudinal force is 
equal to / ( )i il EA , the matrix of internal compliance of the bar, taking 
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into account tensile-compression and bending deformations, will be as 
follows: 

 

 

   

   

2

6 6

2

6 6

i

i

i i
i

i i

i i

i i

l

EА

l l
D

EJ EJ

l l

EJ EJ

 
 
 
 
 
 
 
 
  

. 

 
The frame (Figure 14.3) consists of two bars, so the matrix of internal 

compliance of the system is quasi-diagonal: 
 

1

2

D
D

D

 
  
 

, 

 
and the physical equations are written in the form: 

 

.D S 
 

 
 

14.8. Features of the Calculation of the Systems  
for Temperature Changes, Settlements of Supports  

and Inaccuracy in the Manufacture of Bars 
 

These factors are taken into account by appropriate adjustment of 

physical equations. The deformations vector 


 caused by the efforts 
from the load F


 should be summed with the new deformations vector 




 from other exposures. 
As the temperature changes with respect to a certain initial state, the 

frame bars become deformed (Figure 14.5). Denote by 1t  the tempe-

rature change along the upper face of the bar, through 2t  – along the  
bottom. 
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Figure 14.5 

 
Let 

2 1.t t  
 
A change in temperature along the axis of the rod  
 

1 2

2

t t
t


  

causes its extension 
 

.l t l    
 

The temperature difference 
 

2 1t t t    
 

causes the rotation of the end sections by angles determined by the for-
mula (7.12): 

 

.
2B E

t l

h


     

 

The directions of rotation of the end sections of the bar in Figure 14.5 
are shown as positive. In this case, the strain vector for this bar is written 
as follows: 

 

 , , .
it i Bi Eil

      
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For the entire system a strain vector is formed by joining vectors for 
individual bars. 

When calculating the system for the inaccuracy of manufacturing its 

elements, the vector B


 is known by the condition of the problem. The 
components of the strain vector from inaccurate production of bars are 
determined by the difference between the real and design values of the 
dimensions of the bars. 

The vector of deformation of the bars from the settlement of the sup-
ports can be obtained as follows. We select from the matrix A  the rows 
associated with the equilibrium conditions of the support nodes in the 
directions of the support links. Displacements can have all support nodes 
or only a part of them. The number of such lines, equal to the number of 
support links, is denoted by r . The corresponding equilibrium condi-
tions for the support nodes of the system are written in the form: 

 

  0.rA S 


 
 

We will divide the matrix  rA  into blocks using a vertical partition 
(Table 14.1) and we will consider it as a complex matrix 

     , .r r r
n r rA A A

 
 

 

Table 14.1 
 

 1S  2S   rnS   1rnS


 nS

       
1       1  


 
     

 
 

r
          1 

 

The matrix  r
n rA   is of type  r n r  , and the matrix  r

rA is of .r r  

The forces 1,...,n r nS S   are equal to the reactions in the support 
links: 

 

rS R
 

. 
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The equilibrium equations for the support nodes can be written as  
follows: 

 

    0r r
n r n r r rA S A S   

 
. 

 

Since  r
rA is the identity matrix, then: 

 

 r
r n r n rR S A S   
 

. 
 

For given displacements of the support links, the deformation vector 
of the rods is determined by the expression: 

 

 r
c n rA



  


z


. 
 

The order of the vector z


 is r . 
To take into account the considered exposures, the physical equations 

should be written in the form: 
 

D S    
  

.                                    (14.6) 
 

14.9. Calculating the Bar Systems. General Equations. 
The Mixed Method 

 
Equations of equilibrium (14.3), geometric (14.4) and physical equa-

tions (14.6) together form a common system of equations for calculating 
a linearly deformable bars system. Imagine them in the following form: 

 

;

0;

.

A S F

A z

D S



 
   
    

 


  

                                    (14.7) 

 

The sought-for quantities in (14.7) are the n – dimensional force vec-

tor ,S


 the m – dimensional displacement vector ,z


 and the n -dimensio-

nal strain vector 


. Total unknowns – (2 ).n m  The number of equa-

tions in the system is also equal to 2n m : equilibrium equations – ,n  
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geometric equations – ,m  physical equations – .n  Therefore, this com-
mon system of linear independent equations has a unique solution. This 

means that the exposures F


 and 


 acting on the structure, according to 
the solution of the system of equations, cause a single picture of the dis-
tribution of forces, displacements and deformations in it. Such a system 
of determining mathematical relationships is called the mathematical 
model for calculating the bars system. 

The order of the system of equations (14.7) can be reduced. For ex-

ample, if we find the strain vector 


 from the third group of equations 
and substitute it into the second group of equations, then the system of 
equations (14.7) is transformed to: 

 

;

,

A S F

A z D S

 


  

 

                                   (14.8) 

 

or in matrix form: 
 

0
.

A FS

zD A

     
         

 
                               (14.9) 

 

The forces and displacements are unknown in this version of the 
mathematical model. Therefore, the system of equations of the form 
(14.8) or (14.9) is called the system of equations of the mixed method. 

Solving the equations of the mixed method allows you to find the 
forces in the bars of the system and the displacements of its nodes. 

 
14.10. Displacement Method 

 
We represent the equations of equilibrium in displacements. If there 

are no infinitely rigid elements in the bars system, the quasi-diagonal 
matrix D  is a nonsingular matrix; its determinant is nonzero. Therefore, 

from the second group of equations (14.8) we can find the vector :S


 
 

   1S D A z K A z        
   

, 

 

where K  is the matrix of the internal stiffness of the bars system. 
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Substituting S


 in the first group of equations (14.8), we obtain a rec-
ord of equilibrium equations through displacements z


 in the form: 

 

( )AK A z F   
 

    or    TAK A z F AK   


. 
 

This system of equations is the system of equations of the displace-
ment method. We introduce the notation  

 
TR AK A  

 
and rewrite it in this form: 
 

R z F 


AK 


.                               (14.10) 
 

Matrix R  is a matrix of external stiffness of an elastic system; it has 
a size ( ).m m  

As follows from the scheme of calculating, the matrix is symmetric 
with respect to the main diagonal. The elements of the matrix are deter-
mined taking into account the influence of longitudinal and bending de-
formations. If the calculation is carried out only on the action of the load, 

that is, if the vector of forced deformations 0 


, then the system of 
equations of the displacement method is written in the form: 

 

,R z F


                                       (14.11) 
 

or in expanded form: 
 

11 12 1 1 1

21 22 2 2 2

1 2

m

m

m m mm m m

r r r z F

r r r z F

r r r z F

     
     
      
     
     

    




     


. 

 
By definition, i kr is the force (reaction) in the i -th additional link due 

to the displacement 1kz  . 
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E x a m p l e. Calculate the frame shown in Figure 14.6. The ratio of 
the rigidity of the bars in tension (compression) and bending is taken 
equal to 

2

1
EA h

EJ
 , ( h  = 1 m). 

 

 
 

Figure 14.6 
 

First of all, we transform the given load to the nodal one. The end reac-
tions in single-span statically indeterminate beams loaded with a distribut-
ed load, and the outline of the bending moment diagrams in them (Figu- 
re 14.7), we will find using Table. 9.1. Then the design scheme of the 
frame with a nodal load can be represented as it is shown in Figure 14.8. 

 

 
 

Figure 14.7 
 

The primary system for calculating the frame, taking into account the 
longitudinal deformations of the bars, is shown in Figure 14.9. The posi-
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tive directions of the primary unknowns comply with the sign rule speci-
fied in section 14.2. 

 

 
 

Figure 14.8 
 

Figure 14.9
 

Using the equilibrium matrix and the matrix of internal stiffness of 
the frame, we calculate the matrix of external stiffness: 

 

TR AK A . 
 



























EJ

R

3/1

13/1

1

16/16/1

11

3/1

1

3/43/2

3/23/4

3/1

1

3/1

1

3/1

11

16/1

3/13/11

6/11

13/1
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The load vector F


 in the equation of the form R z F


 corresponds 
to the load shown in Figure 14.8: 

 

 
 

Having solved the system of equations of the displacement method, 
we obtain: 

 

 
 

The force vector calculated by the expression TS K A z
 

 can be writ-
ten as: 

 

 
 

Figures 14.10, a, b show the diagrams of the frame efforts corre-
sponding to this vector. 

 

 
 

Figure 14.10 
 

By superimposing the diagrams of bending moments in the beams 
(Figure 14.7) on diagram M  (Figure 14.10, b) we obtain the final dia-
gram M  in the frame (Figure 14.11). 

Naturally for a different initial ratio of rigidities / ,EA EJ  the ordi-
nates of the diagram M  will differ from those found. 

To assess the effect of longitudinal deformations on the distribution 
of displacements and forces in the frame, we will perform its calculation 
taking into account only bending deformations (Figure 14.12, a). Ne-
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glecting longitudinal deformations, we choose the primary system of the 
displacement method with two unknowns (Figure 14.12, b). 

 

 
 

Figure 14.11 
 

 
 

Figure 14.12 
 

Having completed the necessary steps of the calculations, we find the 
values of the primary unknowns: 

 

1
1

22.891z
EJ

  m,      2
1

25.826z
EJ

  rad. 

 

The diagram of bending moments is shown in Figure 14.13. 
 

 
 

Figure 14.13 
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14.11. Force Method 
 

For a statically indeterminate system the number of equilibrium equa-
tions  m  is less than the number of unknown efforts  n . The equilib-

rium matrix A  has dimensions ( m n ).We will renumber unknown ef-
forts so that the last numbers (out of the total number n ) are assigned to 
those efforts that are accepted as the primary unknowns of the method of 
forces. Then we divide the matrix into two submatrices 0A and xA : 

 

 0 xA A A , 
 

where 0A  is the equilibrium matrix of the primary system, 0det 0.A   

The forces in the bars of the adopted primary system are denoted by 0.S


 

The matrix xA  contains those columns of the matrix A that corre-

spond to the primary unknowns X


 of the force method. 
We write the equations of equilibrium in the following form: 

 

0 0 xA S A X F 
  

. 
 

Geometric and physical equations 
 

A z  


, 
 

D S    
  

, 
 

after converting them to kind 
 

A z D S   
 

 
 

and taking into account the block recording of the matrix A , can be rep-
resented as follows: 
 

 0 0 000
.

0

T

T
x xx

A D S
z

D XA

      
              


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The vector-matrix recording of these operations is reduced to two 
subsystems of equations: 

 

0 0 0 0A z D S   
 

, 
 

x x xA z D X   


. 
 

Thus, a system of equations of mixed form can be written in the form 
of three equations: 

 

0 0 ,xA S A X F 
  

 
 

0 0 0 0 ,A z D S   
 

 
 

.x x xA z D X   


 
 

We exclude the vectors 0S


 and z


 from this system. It follows from 
the first equation that: 

 

 1 0
0 0 x x FS A A X F L X S    
 

,                 (14.12) 
 

where 
 

1
0 ,x xL A A             0 1

0FS A


F


; 
 

1
0 SA L   is influence matrix of efforts in the bars of the primary 

system, constructed from the action of unit forces oriented along the di-
rections of nodal loads; 

0 1
0FS A F

 
 is efforts vector in the bars of the primary system 

from the load ;F


 

xL  is influence matrix of efforts in the bars of the primary system, 
constructed from the action of unit forces oriented in the directions of the 
primary unknowns; 

xL X


 is efforts in the bars of the primary system from .X

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From the second equation we find :z


 
 

   1 1
0 0 0 0 0z A D S A

     
 

.                    (14.13) 

 

Substituting 0S


into the last expression and then z


 into the third equa-
tion, we obtain the equations of the force method in the following form: 

 

  0
0 0 0 0x x x x F x xL D L D X L D S L          

  
,     (14.14) 

 
where 0 xD L X


 is deformation of the bars of the primary system from 

efforts ;X


  
0

0 FD S


 is deformation of the bars of the primary system from 

forces .F


 
Having determined X


, one can find the forces in the bars belonging 

to the primary system by the formula (14.12), and then, by the formula 
(14.13), the vector of nodal displacements .z


 

 
E x a m p l e. We’ll show the calculation of the truss (Figure 14.14) 

by the force method. The cross-sectional areas of all the rods are as-

sumed to be the same and equal to 20.25A m . The elastic modulus of 

the material 210E GPa . 
 

 
 

Figure 14.14 
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The equilibrium matrix of this truss, taking into account the accepted 
numbering of nodes and rods, has the following form: 

 
 
 
 
A = 

1 -1 0 08 0 0 0 
0 0 0 -0.6 0 -1 0 
0 1 0 0 0 0 0.8 
0 0 0 0 0 0 -0.6 
0 0 1 0 0.8 0 -0.8 
0 0 0 0 0.6 1 0.6 

 
The degree of static indeterminacy of the truss is k n m  

7 6 1   . 
One of the main conditions for choosing the primary system of the 

method of forces is, as you know, the condition for its geometric invari-
ability. The determinant of the equilibrium matrix of the primary system 
should not be zero. 

We take the force in the 4th rod as the primary unknown. Then the 
equilibrium matrix of the primary system (Figure 14.15) will have the 
following form: 

 
 
 
 
A0 = 

1 -1 0 0 0 0 
0 0 0 0 -1 0 
0 1 0 0 0 0.8 
0 0 0 0 0 -0.6 
0 0 1 0.8 0 -0.8 
0 0 0 0.6 1 0.6 

 

 
 

Figure 14.15 
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The determinant of this matrix is equal to 0det A  -0.36. 

The matrix xA  is represented by the fourth column of the equilibrium 
matrix of the given system: 

 

xA =  0.8 ; 0.6 ; 0 ; 0 ; 0 ; 0 T . 
 

We find the matrix inverse to the matrix 0A  and the influence matrix 

xL  for the efforts in the rods of the primary system from 1 1:X   
 

1
0A 

1 0 1 1.333 0 0

0 0 1 1.333 0 0

0 1.333 0 2.667 1 1.333

0 1.667 0 1.667 0 1.667

0 1 0 0 0 0

0 0 0 1.667 0 0

  




    1
0x xL A A  

0.8

0

0.8

1

0.6

0







. 

 

The efforts 0
FN


 in the rods of the primary system from the load  
 

 0; 10.0; 0; 10.0; 0; 0 TF   


 
 

will have the following values: 
 

0 1
0FN A F 

 
 13.333; 13.333; 40; 33.333; 10; 16.667 .T    

 

The matrix of internal compliance of the rods of the primary system 
is diagonal and is represented in such a record: 

 

 

1 2 3 5 6 7
0

1 2 3 5 6 7

4

; ; ; ; ;

0.7619; 0.7619; 0.7619; 0.9524; 0.5714; 0.9524 10 .

l l l l l l
diag D

E A E A E A E A E A E A



 
  
 

 

 

 

The compliance of the rod, the force in which is taken as the primary 

unknown 1X , is equal to 44

4

0.9524 10x
l

D
E A

   . 
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The matrix of compliance of the primary system in the directions of 
the primary unknowns in the case of one unknown is represented by one 
element: 

 

5
0 30.857 10T

x x xD L D L D     . 
 

The displacement in the direction of the primary unknown, caused by 
a given load, that is, a free term in the canonical equation of the method 
of forces, is: 

 

0 5
0 514.286 10T

x FL D N     


. 
 

From equation (14.14), which can be written in the form: 
 

0
1 0 0T

x FD X L D N 


, 
 

we find 
 

1 16.667X  kN. 
 

Using expression (14.12), we determine the final forces in all the rods 
of the primary system of the given truss: 

 

 

0
0 1

26.67; 13.33; 26.67; 16.67; 0;16.67  кN,

x F

T

N L X N  

   

 

 

 

and according to the expression (14.13) – the displacements of its 
nodes: 

 

 
 

1
0 0 0

20.2032; 0.5355; 0.3048; 1.477; 0.2032 ; 0.5355 10  m.

T

T

z A D N



 

      


 

 
14.12. Statically Determinate Systems 

 
In a statically determinate system, the number of independent equilib-

rium equations is equal to the number of unknown efforts; therefore, the 
equilibrium matrix A  is square. In this case, the system of equations 
(14.7) splits into two independent groups of equations. 
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From the first of them it follows that if det 0A  , then: 
 
1S A F

 
. 

 
The condition that the determinant of the matrix A  is equal to zero is 

a sign that the calculated system is partially geometrically variable or 
instantly variable. 

The second group of equations allows you to calculate the displace-
ment vector :z


 

 

   1 T
z A D S   

 
. 

 
In the absence of external load, we obtain: 

 

0S 


   and    1 T
z A  


. 

 
These relations confirm the well-known property of statically determi-

nate systems: a change in temperature, displacements of supports or inac-
curacy in the manufacture of elements in statically determinate systems do 
not cause internal forces, but cause only displacements. 

 
14.13. General Equations for a Bar 

 
Consider a frame loaded with a nodal load (Figure 14.16, a), and a 

fragment of its discrete scheme (Figure 14.16, b). The directions of the 
nodal forces and the forces of interaction in the sections shown in the 
figure correspond to the directions of the axes of the general coordinate 
system. 

We establish the relationship of the load in the nodes ,i j  and the ef-
forts in the sections adjacent to the nodes. This dependence is easier to 
obtain first in the local coordinate system (for the bar i j  – the system

),  and then, using the rules of linear transformations, in the general 

system .XY  
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Figure 14.16 
 

The directions of efforts in the end sections of the bar and nodal forc-
es oriented along the axes of the local coordinate system are shown in 
Figures 14.17, a, b, c. 

 

 
 

Figure 14.17 
 

In general, the efforts vectors at the beginning of the bar 
 

 , , T
B B B BS N Q M


 
 

and at the end of it  
 

 , , T
E E E ES N Q M


 

 
contain three components each. In relation to the bar, these forces are 
external and dependent; they are connected by three equations of equi-
librium: 
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 

0, 0, ;

0, 0, ;

1
0, 0, .

B E B E

B E B E

B B E E B

N N N N N

Q Q Q Q Q

M M M Q l Q M M
l

      
     

     






 

 
If the stress state of the bar is characterized by a vector 

 , , ,T
B ES N M M


 then it is necessary to establish the relationship 

between ,B ES S
 

 and .S


 In the matrix form of recording, this depend-
ence is determined in this way: 

 

1 0 0

0 1 1

0 1 0

1 0 0

0 1 1

0 0 1

B

B

BB
B

EE
E

E

E

N

Q l l
N

MS
M

NS
M

Q l l

M

   
        
                         
   

  


 . 

 
Connecting these efforts with the positive directions of the nodal load 

(Figures 14.17, a, c), we obtain the relationship between the nodal load 

vector *F


 and the vector S


 in the form: 
 

1 0 0

0 1 1

0 1 0
.

1 0 0

0 1 1

0 0 1

i

i

i

B
j

E

j

j

F

F l l
Nm

F M a S
F

M
l lF

m





 




 
  

       
            
       
  
   


       (14.15) 

 

The first three components of the vector *F


 determine the load  
on the node at the beginning of the bar, and the next three – at the end  
of the bar. 
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Through *a , the bar equilibrium matrix is denoted in the local coor-
dinate system: 

 

*

1 0 0

0 1 1

0 1 0

1 0 0

0 1 1

0 0 1

l l

a

l l

 
  
  

  
 
 
 
 

. 

 
Upon transition to the general coordinate system, the equilibrium 

equations of the bar (14.15) are transformed. 
Consider the problem of transforming the coordinates of the vector of 

nodal forces in the transition from a local coordinate system to a com-
mon one. 

From the equations of projections of linear forces in the i-th node on 
the axis of the general coordinate system (Figure 14.18) it follows that: 

 

cos sin ,x
i i iF F F      

 

sin cos .y
i i iF F F      

 

 
 

Figure 14.18 
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Given that the moment im  remains unchanged when the coordinate 
system is rotated, we present the expression for the transformation of the 
forces of the i-th node in the form: 

 

*

cos sin 0

sin cos 0 ,

0 0 1

x
i i

y T
i ii i

i i

F F

F F F C F

m m





                              

 
      (14.16) 

 

where TC  is matrix of the rotation operator when the vector is rotated 
through an angle clockwise.  

Through C  it is customary to denote the matrix of the operator of ro-
tation of the vector counterclockwise.  

Similar relations hold for forces in the j-th node: 
 

*T
j jF C F
 

. 

 
Then, for the load vector in the nodes connected by the bar, the rotation 

transformation will be performed using the expression: 
 

* *0

0

T
T

T

C
F F V F

C

 
  
  

  
,                      (14.17) 

 

where 
 

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

.

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

TV

   
   
 
         
   
 

  
 
 
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So, if equality (14.15) is multiplied on the left by the matrix TV , then 
in the general coordinate system the vector of nodal forces F


will be 

expressed through the vector of efforts S


 in the following form: 
 

F a S


,                                     (14.18) 
 

where a  is a bar equilibrium matrix in the general coordinate sys-
tem, i.e.: 

*Ta V a  
or 

sin sin
cos

cos cos
sin

0 1 0

.

sin sin
cos

cos cos
sin

0 0 1

l l

l l

a

l l

l l

     
 

    
 
  

     
    
 
  

  
 
  

 

 
In this form, the equilibrium matrix is written for the bar with both 

pinched ends. As follows from (14.18), equilibrium matrices for bars with 
other conditions of supporting the ends can be obtained from this one by 
deleting rows and columns corresponding to zero forces in the bar.  

In particular, if the left end of the bar has a hinge support ( 0BM   ), 
and the other end is pinched, the equilibrium matrix is obtained from the 
original by deleting the second column and the third row. For bars with 
different options of support fastenings, the equilibrium matrices in the 
general coordinate system are written in the Table 14.2. 

Let us determine the relationship between the deformations of the bar 
and the displacements of its ends. We write the displacement vector in the 
general coordinate system for the rod rigidly fixed at the ends in the form: 
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,, , , , , ,
Tx y x y

B B E EB Ez z z z z    


 

 

where, as before, the indices “ B ” and “ E ” denote the beginning and 
ending of the bar. The displacements of the bar ends are the displace-
ments of the nodes that it connects. 

Figure 14.19 shows the initial and deformed positions of the bar in 
the local coordinate system. 

 

 
 

Figure 14.19 
 

Table 14.2 
 

Option Matrix   Matrix k  

1 2 3 

x

N

N

MH

K



 
 

 , ,T
B ES N M M  

 , ,T
B El        

sin sin
cos

cos cos
sin

0 1 0

sin sin
cos

cos cos
sin

0 0 1

l l

l l

l l

l l

 
  

 
  


  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 



























l

EI

l

EI
l

EI

l

EI
l

EA

42
0

24
0

00
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Table 14.2 (ending) 
 

1 2 3 

x

N

N

MK



 
 

 ,T
ES N M  

 ,T
El      

sin
cos

cos
sin

sin
cos

cos
sin

0 1

l

l

l

l


  


 

 





 

 
 
 
 
 
 
 
 
 
 
 
  

 
















l

EI
l

EA

3
0

0  

3 y

x

N

N

MH 

 
 

 ,T
BS N M  

 ,T
Bl      

sin
cos

cos
sin

0 1

sin
cos

cos
sin

l

l

l

l


 


  


 


 




 
 
 
 
 
 
 
 
 
 
 
  

 
















l

EI
l

EA

3
0

0  

4 y

x

N

N



 
 

lNS   

cos

sin

cos

sin

 
 




 
 
 
 
 
  

 





l

EA  

y5

MH MK

l
 

 

 ,T
B ES M M  

 ,T
B E      





























10

/1/1

01

/1/1

ll

ll

 





















l

EI

l

EI
l

EI

l

EI

42

24
 



 

409 

The elongation of the bar and the angles of rotation of its end sections 
are components of the strain vector: 

 

 , , .T
B El    


 

 
As follows from the Figure 14.19: 

 

E Bl u u   , 
 

( ) E B
B B B l

  
        , 

 

E B
E E E l

  
       . 

 

The direction of the rotation angle B  does not coincide with the 

positive direction of the moment ,BM  therefore the expression ( )B 
is accepted as negative. Using the matrix formula for writing, we get: 

 

* *

1 0 0 1 0 0

1 1
0 1 0 0 ,

1 1
0 0 0 1

E

B

B T
B

E
E

E

E

u

v
l

a z
ul l

v
l l

                                        

 
 (14.19) 

 

where  * T
B B B E E Ez u v u v  


 – is vector of displacements of the 

ends of the bar in the local coordinate system. 
As in the case of operations with force vectors (14.17), the transfor-

mation of the coordinates of the vector *z


 when the axes  are rotated 

by an angle   clockwise is performed using the matrix .TV  Therefore, 
we can write that: 

 

*.Tz V z 
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Consequently,  
* .z V z 

 
 

Then, in the general coordinate system, geometric equations, which are 
conditions of the compatibility of displacements of nodes (end sections of 
the bar) and deformations of the bar, can be written in the form: 

 
* .T Ta V z a z  

  
                               (14.20) 

 
We turn further to the physical equations, which describe the rela-

tionship of the deformation of the rod with the forces in it. Previously 
(section 14.7), it was shown that for a linearly deformable bar, this rela-

tionship is represented as i i iD S 
 

 (the index “i” corresponds to the 
number of the bar), or in expanded form for a bar with rigidly fixed ends, 
without entering its number of designation, in the form: 

 

0 0

2
0 ,

6 6
2

0
6 6

B B

E E

l

EAl N
l l

M dS
EJ EJ

Ml l

EJ EJ

 
 

    
             
       

 
 

 
 

 

where d is the matrix of the internal compliance of the bar. 
For bars with other conditions for joining nodes, physical dependen-

cies are established using well-known methods for determining the end 
displacements. So, for a bar pivotally supported at the beginning and 

pinched at the end, the relationship 


 and S


 is obtained in the form: 
 

0
.

0
3

E E

l
l NEA dS

Ml

EJ

 
    

            
  

 
 

 
And for a bar with pinching at the beginning and a hinge support at the end: 
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0
.

0
3

нB

l
Nl EA dS

Ml

EJ

 
    

            
  

 
 

 

If it is necessary to write a physical law in the form   ,S S 


then 

from the presented expressions it follows that: 
 

1 ,S d k   
 

                                 (14.21) 
 

where k  is the matrix of internal stiffness (matrix of reactions) of the bar. 
For example, for a bar with pinched ends: 
 

0 0

4 2
0

2 4
0

EA

l
EJ EJ

k
l l
EJ EJ

l l

 
 
 
  
 
 
 
  

. 

 

The equations of structural mechanics for a separate bar allow us to 
automate the process of forming the equilibrium matrix and the matrix of 
internal stiffness for an arbitrary planar bars system. 

 
14.14. Forming the Equilibrium and Internal  

Stiffness Matrices for a Bars System 
 

The format of the equilibrium matrix of the bars system is determined 
by the number and type of its nodes and elements. The number of rows of 
the matrix is equal to the number of equilibrium equations, that is, the num-
ber of degrees of freedom of the nodes. The number of columns is equal to 
the number of unknowns. Thus, the matrix ( )A  has dimensions ( ).m n  

The structure of the equilibrium matrix A  can be represented in 
blocks form. For each rigid node, three lines are provided in which the 
coefficients from the equations 0,X   0Y   and 0M   are 
written sequentially. For each hinged node, two lines of coefficients are 
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written from the equations 0X   and 0.Y   In the orthogonal di-
rection, vertical, the matrix appears to be divided into blocks columns, 
the number of which is equal to the number of bars. The width of the 
blocks column (the number of simple columns in it) is determined by the 

length of the vector S


 for each bar. 
Let's compose the equilibrium matrix using the example of a two-

span frame (Figure 14.20). 
 

 
 

Figure 14.20 
 

The equilibrium matrix A  is written in table. 14.3. For easier orienta-
tion in the matrix structure, explanatory notes are given in the upper part 
of the table and to the left of it. The blocks of columns of the table corre-
spond to bars of the frame. The number of columns in the block corre-
sponds to the conditions of adjacency of the separate bar with the nodes 
of the frame. In each block of columns, the matrix a of an individual bar 
is located. The upper part of this matrix is connected with the beginning 
of the bar, and the lower – with its end. 

 

Table 14.3 
 

Bars  1 2 3 4 
ST  N1 N2 MB2 ME2 N3 MB3 ME3 N4 ME4

 
Nodes №№  1 2 3 4 5 6 7 8 9 

 

2 
1 

 

0.9701 -1 0 0 0 -0.25 0.25 0 0 
2 0.2425 0 -0.2 0.2 1 0 0 0 0 
3 0 0 -1 0 0 -1 0 0 0 

4 
4 0 1 0 0 0 0 0 0 0.25 
5 0 0 0.2 -0.2 0 0 0 1 0 
6 0 0 0 1 0 0 0 0 0 
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For example, the both ends of bar 2 are rigidly fixed at the nodes 2 
and 4. Its matrix a  has dimensions of 6x3.The first three lines refer to 
the beginning of the bar, that is, to node 2 (see the horizontal direction in 
the table), and the remaining lines to node 4. 

If support links are imposed on one end of the bar (the bar is adjacent 
to the support node) and the forces in these links do not need to be calcu-
lated (no support reactions need to be determined), then the part of the 
bar equilibrium matrix a associated with the support node does not fit 
into the general equilibrium matrix of the A . So, the numerical values of 
the matrix a  for the 3rd bar (5th, 6th and 7th columns) refer only to the 2nd 
node. A similar distribution of records takes place on the 1st and 4th bars. 

The exclusion from the matrix of equations of equilibrium of the sup-
port nodes makes it possible to reduce the size of the matrix, which is 
expedient from a computational point of view.. 

For a deeper understanding of the physical meaning of the task, and 
also for the purpose of recording control during manual preparation of 
the initial data, one should sometimes check the record of individual 
equilibrium equations for the system nodes. So, for the same frame, the 
equation 0Y   for the 2-nd node (Figure 14.21) is written in the form: 

 
3

1 2 2 30.2425 0.2 0.2 20 10B EN M M N         , 
 

where the substitution 
 

2 2
2

2

E BM M
Q

l


  

 
has already been taken into account. 

A similar structure of matrix A  takes place for other systems (beams, 
arches, trusses, etc.). 

So, the number of rows in matrix A  is equal to the number of equi-
librium equations of the system nodes, the number of columns is the 

number of unknown efforts (components of the vector S


 are indicated in 
the upper part of the table containing the equilibrium matrix). 

Returning to the question of the degree of freedom of the system, we 
note that in our example 6, 9.m n   The degree of static indetermina-
cy 3.k n m    
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Figure 14.21 
 

For a geometrically unchanged bars system, the rank of the equilibri-
um matrix is equal to the number of independent equilibrium equations 
for the nodes of this system, that is   .r A m  Moreover, if m n and 

the determinant of the equilibrium matrix det 0,A   then the investigat-
ed system is statically determinate; if ,m n  then the system is statically 
indeterminate. 

When ,m n  the matrix rank can be   ,r A n  but in any case the 

system is geometrically changeable. 
As it has already been noted the number of components in the vectors 

S


 and 


is the same. In the table 14.3, the vectors S


 are recorded for 
each bar. The number of equilibrium equations, the coefficients of which 
are written in the matrix A , corresponds to the number of determined 
components of the displacement vector z


 both for an individual node 

and for the system as a whole.  
The row number in the matrix A  also indicates the number of the 

corresponding component of the vector .z


 For example, the second row 

 0Y  of the matrix A  corresponds to the vertical displacement of 

node 2 and the second component in the displacement vector .z


 The 
total number of unknown displacements for the problem under consider-
ation in the adopted formulation is six. 

The matrix of internal stiffness of a single rod is square. Its size is de-

termined by the number of components of the bar vector .S


 For the en-



 

415 

tire system, the internal stiffness matrix K  has a quasi-diagonal struc-
ture; for the frame under consideration, it is presented in Table 14.4. 

The indicated consistency of the matrices in the general equations of 
structural mechanics allows us to compose an algorithm for solving a 
mathematical model of the problem of verification calculation of bars 
systems. 

 

Table 14.4 
 

 1 2 3 4 5 6 7 8 9 

1  14.82         
2  12.22 0 0      
3  0 0.8 -0.4      
4  0 -0.4 0.8      
5     15.28 0 0   
6     0 1 -0.5   
7     0 -0.5 1   
8        15.28 0 
9        0 0.75 

Note. All elements of the internal stiffness matrix have a factor of 30.24106 

 
Automated calculation of the bars system involves the formation of 

matrices of general equations and the solution of the latter based on the 
initial data on the system, which include: 

– the number of nodes, including support, and their signs (properties); 
– coordinates of nodes; 
– the location of the bars connecting the nodes; 
– stiffness of the bars; 
– information about the load acting on the nodes. 
Since the elements of the matrix are the sines and cosines of the an-

gles of inclination of the bars to the coordinate axes, their calculation is 
reduced to determining the quotient of dividing the lengths of the projec-
tions of the bars on the coordinate axis (the difference in the coordinates 
of the end and beginning of the bar) by the lengths of the bars. 

Depending on the tasks, calculation results can be values of the node 
displacements, the forces in the bars and their deformations, the matrix of 
the external rigidity of the system, the matrix of the influence for forces 
and displacements. This information allows you to identify the features of 
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the system under load and can be used to plot diagrams of efforts and dis-
placements, lines of influence of efforts and displacements. 

For the frame under consideration, we determine the displacements  
of the nodes, the internal forces in the bars, and construct the force  
diagrams. 

If we accept  
 

  30; 20; 4; 5; 10; 4 10 ,
T

F     


 
 

where the dimension of concentrated forces and moments is N and Nm, 
then from the expression 

 

  1
z A K A F




 

we find that: 
 

 
2 2 3 32 3

4

, , , , ,

0.1910; 0.4348; 1.2104; 0.3251; 0.2332; 2.1982 10 .

x y x y

T

z z z z z



     

    
 

 

The sixth component of the vector z


 corresponds to the angle of ro-
tation of the section at the end of the 2nd bar. 

The effort vector is determined by the ratio 
 

.S K A z
 

 
 

3

3.58; 4.95; 0.12; 4.00;

20.09; 3.88; 2.05; 10.78; 0.18 10 .
T

S   

   
 

 

Vertical lines separate the effort components related to specific bars. 
Diagrams of efforts in the frame are shown in Figure 14.22. 
 

 
 

Figure 14.22 
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To determine the transverse forces in the bars, the dependence had 
been used: 

 

E BM M
Q

l


 . 

 

Namely 
 

2
4.0 0.12

0.776
5

Q
 

   ;     3
2.05 3.88

1.4825
4

Q


  ;  

4
0.18

0.045
4

Q   . 

 
E x a m p l e. Determine the forces in the rods of a statically indeter-

minate truss (Figure 14.23). 
The rigidity of the rods are taken equal to: 
 

1 4 1 3 2 4 ,EA EA EA EA      1 2 2 3 3 4 2 .EA EA EA EA      
 

 
 

Figure 14.23 
 

The number of unknown efforts n = 6. The degree of kinematic inde-
terminacy m = 5. Degree of static indeterminacy 1.k n m    

The calculation is performed by the displacement method using the 
general equations of structural mechanics. The primary system and the 
positive directions of the primary unknowns are shown in Figure 14.24. 
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Figure 14.24 
 

The equilibrium matrix A is formed “column by column” in accord-
ance with the recommendations of section 14.14. It is shown in the table 
below. 

 
Type of 
Equation 

Nodes 
 
 
 
 

А = 

Rods 

1-4 2-3 1-2 3-4 1-3 2-4 

X = 0 
Y = 0 

2  -1 0.6   -0.939793 
  0.8   0.341743 

X = 0 
Y = 0 

3  1  -0.6 0.939793  
   0.8 0.341743  

X = 0 4 1   0.6  0.939793 

 
The matrix of internal rigidity K  for the entire system is square, it 

has a diagonal structure: 
 

{1/ 7, 2 / 4, 2 / 2.5, 2 / 2.5, 1 / 34.25, 1 / 34.25} .diagK EA   
 

The external stiffness matrix is calculated by the expression: 
 

TR AK A  
 

and is given in the table below.  
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R =  

0.938916 0.329122 -0.5 0 -0.150916  
 

 EA 
0.329122 0.531956 0 0 0.0548784 

-0.5 0 0.938916 -0.329122 -0.288 
0 0 -0.329122 0.531956 0.384 

-0.150916 0.0548784 -0.288 0.384 0.581773 
 

The system of equations of the displacement method is written as: 
 

R z F


. 
 

If det 0R  , then the external stiffness matrix R  is a nonsingular 
matrix and can be inverted. 

The calculated values of the elements of the inverse matrix 1R  are 
given in the table below. 

 
 
 

1R = 

4.29685 -2.98726 3.14043 -0.357711 3.18716  
 

 1/EA 
-2.98726 3.99269 -2.20723 0.485925 -2.56495 
3.14043 -2.20723 3.67116 0.422316 2.56147 
-0.357711 0.485925 0.422316 3.99269 -2.56495 
3.18716 -2.56495 2.56147 -2.56495 5.74863 

 

Load F


= [5, –10, 0, –10, 0]T in the given truss causes node displa-
cements the values of which can be determined with the matrix formula 

 
1 .z R F


 
 
The calculated displacement values are also written in the table below. 

 
Node numbers 2 3 4 

Displacements Z*EA, m 54.934 -59.722 33.551 -46.575 67.235 
 
Note. The first component of displacements for nodes 2 and 3 corresponds to the dis-

placement along the X axis, and the second along the Y axis. 
 

The vector of the truss rod forces N


 is calculated by expression: 
 

TN KA z
 

: 
 

Rods 1-4 2-3 1-2 3-4 1-3 2-4 
Forces, kN 9.605 -10.691 -11.854 -13.640 2.668 -1.512 
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The matrix 1R  can also be considered as a compliance matrix of the 
given truss, i.e., of the original truss without additional nodal links. The 
compliance matrix allows expressing displacements through loads: 

 
1 .z R F DF 
 

 
 
The compliance matrix of the truss under consideration (Figure 14.23) 

can be written as 
 

11 12 13 14 15

21 22 23 24 251

51 52 53 25 55

.R D

     
       
      
      

 

 
If the given truss (Figure 14.23) is loaded by a unit force 1 1F   ap-

plied in the direction of the system displacement 1Z  (Figure 14.25), then 
the values of the all node displacements shown on the last figure will 

make up the first column of the compliance matrix 1D R .  
 

 
 

Figure 14.25 
 



 

421 

14.15. Influence Matrices for Displacements and Efforts 
 
From the equality  

1D R   
 

it follows that the displacement vector z


 can be expressed through the 
load vector F


 according to the formula 

 

.z DF


 
 

Therefore, the external compliance matrix D  inverse to the external 
rigidity matrix R , is also an influence matrix of displacements zL , i.e. 

 

zz DF L F 
 

, 
where  

1 1( ) [ ]T
z ijL D R AKA       

 

Its size is ( ).m m  Using this influence matrix zL , the vector of nod-

al forces F


 is transformed into a vector of nodal displacements .z


 The 
element ij  of this matrix determines the displacement of the system 

node in the ith direction from the unit force 1jF  . 

The force vector S


 in a bars system can also be expressed in terms of 
the vector F


. For this purpose, we write it first in the form 

 
TS KA z

 
, 

 
and then, using the expression for ,z


 we represent it in the form 

 

  11 ,T T T
SS K A R F K A A K A F L F

  
   

 

 
where SL  is an influence matrix of efforts. 

Its size is ( ).n m  Each element ik  of this matrix determines the ith 

internal force (ith element in the vector S


) from the kth external unit 
force ( 1kF  ). 
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Elements 1i  of the first column of the matrix SL  are the internal 

forces in the all bars of the system due to the unit load 1 1F  . Using the-
se elements, you can plot the forces diagrams in the bars of the system 
from loading it by force 1 1F  .  

The elements of the first line show the values of the effort 1S  from 
the sequential loading of the system nodes by unit forces. Using these 
numbers, one can therefore construct a line of influence of the effort 1S . 
In this operation, from the first line it is necessary to select those num-
bers (elements) that correspond to a given direction of movement of a 
unit force. 

Influence matrices are very important characteristics of the calculated 
(investigated) system. A change in a system of a parameter will neces-
sarily entail a change in these matrices. 

The physical meaning of the elements of the influence matrices also 
indicates that efforts diagrams or influence lines of efforts can be used to 
compile them. Such calculation methods are usually used for simple 
(with a small number of elements) systems. In other, more complex cas-
es, it is advisable to apply the indicated mathematical formalization of 
this process using equilibrium matrices A  and the internal stiffness ma-
trices .K  

Between influence matrices of efforts SL and displacements zL there 
is a relationship. Indeed, since 

 
1( )T T

SL KA AKA    and  1( )T
zL AKA  , 

 

then 
T

S zL KA L . 
 

As for matrices of external rigidity (stiffness) 
 

TR AKA  
 

and external compliance 
 

1 1( )TD AKA R   , 
 

they are widely used in the dynamics and stability of structures. 
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E x a m p l e. We show the use of the general equations of structural 
mechanics for calculating a continuous beam (Figure 15.23, a). The 
beam is loaded with three load options and has a constant cross section: 

 
461.2 10A    m2,      40.895 10I    m4,      52.1 10E    MPa. 

 
Dimension of forces – kN, moments – kNm, lengths – m. 
The total number of nodes is 9. 
The boxes indicate the numbers of beam elements. 
The matrix is formed “bar by bar” using the 5th option of the Table 14.2. 
The internal stiffness matrix is quasi-diagonal: 
 

 

3
1 1 1 1 2 2 2 2[ | ] 18.795 10diagK K K K K K K K K   , 

 
Where 

1 2
4 2 4 /1.5 2 /1.5

, .
2 4 2 /1.5 4 /1.5

K K
    

        
 

 
The solution of the system 

 
TAKA z F  

 
gives a displacement matrix z . Linear displacements are measured in 
meters, turning angles are in radians. 

The displacements diagram (Figure 14.26, b) corresponds to the first 
loading of the beam. 

The efforts matrix S was calculated by the expression 
 

TS KA z . 
 
With its help, diagrams of bending moments were plotted for each 

load option (Figures 14.26, c, d, e). 
To construct the lines of the influence of efforts, we used the matrix 

of the influence of internal forces: 
 

1( )T T
SL KA AKA  . 
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Figure 14.26 
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The elements in columns Nos. 2, 4, 6, 9, 11, 13 are the efforts in the 
beam caused by the vertical concentrated unit force applied, respectively, 
at points Nos. 2, 3, 4, 6, 7, 8. Columns Nos. 1, 3, 5, 7, 8, 10, 12, 14 con-
tain information about the efforts due to the concentrated unit moment 
applied, respectively, at points Nos. 1, 2, 3, 4, 5, 6, 7, 8. 

The rows of the matrix SL  contain the ordinates of the influence lines 
for internal forces in the corresponding cross sections of the beam. So, 
with the help of the elements of the 5th row, the 3.Inf Line M  was built 

(figure 14.26, f). The effort 3M  is the bending moment in the cross sec-
tion No. 3 (at point No. 3). This moment can be considered as a bending 
moment 3BM  at the beginning of the third element, or as a bending 

moment 2EM at the end of the second element of the beam. The ordi-

nates of 2EM are in the 4th row of SL  in columns Nos. 2, 4, 6, 9, 11, 13.  

To build 8.Inf Line M  (Figure 14.26, g) the ordinates from the 15th 

row of sL  were used. 
 

14.16. Spatial Trusses 
 
The coordinates of nodes of the spatial truss will be considered 

known. For rod 1 2P P  ( 1P  is node at the beginning, 2P  is node at the end 

of the rod), as for the directed segment 1 2P P


, we find the direction co-

sines cos , cos , cosx y z    by the expressions: 

 

2 1 2 1 2 1cos , cos , cos ,x y z
x x y y z z

l l l

  
       

 

where  
 

2 2 2
2 1 2 1 2 1( ) ( ) ( ) .l x x y y z z       

 

The direction cosines of the directed segment 2 1P P


 are  
 

cos , cos , cosx y z      . 
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We will consider the tensile longitudinal force in the rod to be posi-
tive. In the terminal sections of the rod, it has opposite directions. These 

directions correspond to the directions of segments 2 1P P


 and 1 2 .P P


 

The projections of the directed segment 1 2P P


 on axis , ,OX OY OZ  
are equal respectively: 

 

2 1 2 1cos , cos ,x x y yl x x l l y y l         
 

2 1 cosz zl z z l    . 
 

Consequently, the projections of the longitudinal force N applied at 
point 2P  on the same axis are equal 

 

cos , cos , cosx y zN N N   , 
 

and the projections of the force N  applied at the point 1P  must be rec-
orded with the opposite sign: 

 

cos , cos , cosx y zN N N      . 
 

The numbering of truss nodes determines the numbering of nodes 1P  

and 2P , connected by a rod. Moreover, for the beginning of the rod, that 

is, for point 1P , a node with a lower number is taken. 
In the equilibrium matrix A , with each free node of the spatial truss, 

three rows are connected, in which the coefficients are written for the 
forces N  in the rods adjacent to this node. These coefficients are factors 
(direction cosines) with N  in the equations: 

 

0, 0, 0.X Y Z      
 

In practical problems, it is more convenient to form a matrix A  not in 
rows but in columns. Recall once again that the direction cosines of the 
rod in the equations related to the nodes 1P  and 2P  will have opposite 
signs. When forming a matrix by columns, it is recommended to use a 
template vector a


 for each bar: 

 

[ cos , cos , cos , cos , cos , cos ]Tx y z x y za          


. 



 

427 

The first three elements of the vector refer to the beginning of the rod 
(node 1P ), the remaining three to the end of it (node 2P ). 

The general equations of structural mechanics for a spatial truss have 
the same notation as for a plane system. 

N o t e. For plane trusses the equilibrium matrix can also be formed 
through the direction cosines using the above vector a


, excluding the 

components in it: cos ,..., cosz z   . 
 
E x a m p l e. Determine the forces in the rods of the spatial truss 

(Figure 14.27). The rigidity of all rods is taken equal to EA . Load vector 
is F


=  [5.0; 10.0; –4.0]T kN.  
 

 
 

Figure 14.27 
 
Having determined the direction cosines of the rods, we form the 

equilibrium matrix: 
 

 
 
A = 

E. 1–5 E. 2–5 E. 3–5 E. 4–5 
+0.15617 -0.15617 - 0.15617 0.15617 
+0.31235 +0.31235 - 0.31235 - 0.31235 
+0.93704 +0.93704 +0.93704 +0.93704 
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The truss internal stiffness matrix is diagonal: 
 

[0.15617, 0.15617, 0.15617, 0.15617]diagK EA . 
 

The matrix of the external rigidity of the truss is obtained by the for-

mula TR AK A  and has the form: 
 

 
R= 

0.0152365 0 0  
 EA. 0 0.0609461 0 

0 0 0.548514 
 

The matrix inverse to matrix R is shown below:  
 

 
R–1 = 

65.6317 0 0  
1/EA. 0 16.4079 0 

0 0 1.8231 
 

The vectors of displacements of node 5 and the internal forces in the 
rods are calculated by known formulas. 

 

Z


= [328.159; 164.079; –7.292]T 1/EA. 
N


= [14.941; –1.067; –17.075; –1.067]T, kN. 
 

E x a m p l e. Determine the forces in the rods of the spatial truss 
(Figure 14.28). The stiffness of all rods taken equal to EA . 

 

 
 

Figure 14.28 
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The load vector is taken in the form: 
 

[0; 0; 0; 0; 0; 0; 0; 0; 5.0; 5.0; 50.0;

5.0; 5.0; 100.0; 5.0; 5.0; 50.0 ] .T

F

kN

  

   


 

 
The truss equilibrium matrix is given in table. 14.5. 
In this example, the task of determining support reactions was not 

posed. Therefore, there are no rows in the matrix A  corresponding to the 
equations of the projections of forces in the rods adjacent to the support 
nodes in the directions of the support links. 

 
The truss stiffness matrix K  is diagonal: 
 
diagK= {0.2; 0.2; 0.125; 0.2; 0.2; 0.125; 0.2; 0.2; 0.125; 0.15617; 

 

0.15617; 0.15617; 0.15617; 0.25; 0.25; 0.25; 0.25; 0.25; 0.25} EA. 
 
The solution of the system of equations Rz F

 
 gives: 

 

[ 382.96, 254.51,14.27,14.27,25.73,173.99,

25.73,382.96, 236.14,114.66, 539.03, 79.32,

1
120.39, 826.69,158.01,126.12, 621.12] .

Tz

m
EA

  
  

 

  

 
The efforts in the truss rods are determined by the expression:  
 

TN K A z
 

. 
 

[ 44.79, 30.50,47.87, 71.41, 58.91,53.56, 49.25,

38.54,47.87, 19,27,5.71, 10.30, 27.27,3.57,0,0, 6.43,

1.43,1.43] .

TN

kN

     
    


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14.17. Spatial Frames 
 
For each bar of the frame, the orientation of the axes of the local coor-

dinate system (hereinafter referred to in small letters , , )x y z  will be con-

sidered known. The axis ox  is directed from node 1P  to node 2P  (from a 
node with a lower number to a node with a higher number). The axes oy  

and oz  of the right Cartesian coordinate system are located in a plane 
perpendicular to the axis ox  and passing through the point 1P . Since the 
position of the cross section of the frame bar is taken to be predetermined, 
the position of the axes oy  and oz  is also established. The location of the 
axes along each bar must be fixed unambiguously. 

Let relative to the axes of the global coordinate system :OXYZ  
– the axis ox  has direction cosines 11 21 31, ,t t t ; 

– the axis oy  has direction cosines 12 22 32, ,t t t ; 

– the axis oz  has direction cosines 13 23 33, ,t t t . 

Then the local coordinate system adopted for the bar is characterized 
by a matrix of direction cosines: 

 

11 21 31

12 22 32

13 23 33

.

t t t

T t t t

t t t

 
   
  

 

 
Using the matrix T , Cartesian rectangular coordinates are transformed 

when the axes are rotated. 
Define the force and strain vectors in the bar of the spatial frame in the 

following form: 
 

[ , , , , , ]TT yb ye zb zeS N M M M M M


, 

 

[ , , , , , ]T
T yb ye zb zel       


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The efforts in the bar end sections, oriented along the axes of the local 

coordinate system, are expressed by the vector *r


 through the vector S


 

using the equilibrium matrix *a : 
 

* *r a S


, 
 

where 
 

* [ , , , , , , , , , , , ]Txb yb zb xb yb zb xe ye ze xe ye zer r r r m m m r r r m m m


. 

 
The components of the vector *r


 are shown in Figure 14.29. The posi-

tive components directions of the vector S


 are shown in Figure 14.30. 
 

 
 

Figure 14.29 
 

Figure 14.30 
 

In these figures, a vector image of moments was used. The moment acting in 
a clockwise direction along a certain axis (when viewed from a point correspond-
ing to the end of the coordinate axis) is depicted by a vector directed in the posi-
tive direction of the axis.  

In Figure 14.29 notations accepted: 
,xb xem m  are torques at the beginning and at the end of the bar; 

,yb yem m  are bending moments at the beginning and at the end of the bar 

relative to the axis y ; 

,zb zem m  – bending moments at the beginning and at the end of the bar rel-

ative to the axis z . 
The equilibrium conditions for the bar allow us to obtain the following 

relationships: 
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; ;

; ;

; ;

; ;

; ;

; .

xb xe xb

ze zb
yb ye yb

ye yb
zb ze zb

xb T xe xb

yb yb ye yb

zb zb ze zb

r N r r

M M
r r r

l
M M

r r r
l

m M m m

m M m m

m M m m

   


  


  

  
   

  

 

 

The positive directions of the end forces (Figure 14.29) coincide with 
the directions of the axes of the local coordinate system. Therefore, to 
project these efforts on the axis of the global coordinate system, we use 
the matrix T : 

, 11 , 12 , 13 ,X B x b y b z bR t r t r t r      ; 

, 21 , 22 , 23 ,Y B x b y b z bR t r t r t r      ; 

, 31 , 32 , 33 ,Z B x b y b z bR t r t r t r      ; 

, 11 , 12 , 13 ,X B x b y b z bM t m t m t m      ; 

, 21 , 22 , 23 ,Y B x b y b z bM t m t m t m      ; 

, 31 , 32 , 33 ,Z H x н y н z нM t m t m t m      . 
 

In matrix form, these expressions are represented as follows: 
 

,T T
b b b bR T r M T m 
  

, 
where 

, , ,; ; T
b х b y b z bR R R R   


; 
 

, , ,; ; T
b х b у b z bM M M M   


; 
 

, , , , , ,; ; ; ; ;T T
b x b y b z b b x b y b z br r r r m m m m        
 

. 

 

Similar relations hold for the efforts at the end of the bar: 
 

,T T
e e e eR T r M T m  
  

, 
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where  

, , ,; ; ;T
e x e у e z eR R R R   


 

, , ,; ; T
e х e y e z eM M M M   


; 

, , , , , ,; ; ; ; ;T T
e x e y e z e e x e y e z er r r r m m m m        
 

. 
 

Based on the recorded expressions, the reactions vector at the bar ends 
in the global coordinate system is defined as follows: 

 

R a S


, 
where 

, , , , , ,

, , , , , ,

; ; ; ; ; ;

; ; ; ; ; ; ;

х b у b z b х b у b z b

T
х e у e z e х e у e z e

R R R R M M M

R R R M M M

 




 

 

a  is bar equilibrium matrix in the general coordinate system: 
 

13 13 12 12
11

23 23 22 22
21

33 33 32 32
31

11 12 13

21 22 23

31 32 33

13 13 12 12
11

23 23 22 22
21

33 33 32 32
31

11 12 13

21 22 23

31 32 33

.

t t t t
t

l l l l
t t t t

t
l l l l

t t t t
t

l l l l
t t t

t t t

t t t
a

t t t t
t

l l l l
t t t t

t
l l l l

t t t t
t

l l l l
t t t

t t t

t t t

  

  

  






 

 

 

 
 
             

(14.22)
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The equilibrium matrices of rods and bars of plane and spatial trusses, 
plane frames, systems of cross beams are obtained as special cases from 
the written matrix a  (14.22) by deleting the corresponding rows and col-
umns. 

The matrix of internal stiffness of the bar rigidly fixed at the ends has 
the following form: 

 

4 2

.
2 4

4 2

2 4

KP

y y

y y

z z

z z

EA

l
GI

l
EJ EJ

l lK
EJ EJ

l l
EJ EJ

l l
EJ EJ

l l










 

 
The basic equations of structural mechanics for calculating the 

bars systems in the form of a displacement method are presented in 
the form: 

 

R z F A K   


. 
 

The matrix A  of equilibrium equations of the calculated system is 
compiled element by element using the equilibrium matrices a  (14.22) of 
the bars. 

 
E x a m p l e. Plot the diagram of the longitudinal forces, torsional and 

bending moments in the frame (Figure 14.31). Accept the following stiff-
ness ratios for all bars:  

 
2 , ( 1 ).T y zEAh GJ EJ EJ h m      
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Figure 14.31 
 

The positions of the local coordinate axes for each bar of the frame 
shown in Figure 14.32, determine the matrix of direction cosines: 

 

1 2 3

1 0 0 0 1 0 0 0 1

0 1 0 , 1 0 0 , 0 1 0

0 0 1 0 0 1 1 0 0

T T T

     
             
          

. 

 

 1

 1

 1

2

2 2

3

3

3

z z z
y

y

yx

x

x  
 

Figure 14.32 
 

The matrix of frame equilibrium equations is given in table 14.6. 
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Table 14.6 
 

 
 

The matrix of the internal rigidity of the frame is quasi-diagonal: 
 

 1 2 3, , ,ydiag K K K K EJ   

where 

1

1 / 6

1 / 6

4 / 6 2 / 6
,

2 / 6 4 / 6

4 / 6 2 / 6

2 / 6 4 / 6

K

 
 
 
  

   
 
 

 

   

2

1 3

1 3

4 3 2 3

2 3 4 3

4 3 2 3

2 3 4 3

K

 
 
 
  

   
 
 

 

, 

3

1 4

1 4

1 0.5
.

0.5 1

1 0.5

0.5 1

K

 
 
 
  

   
 
 

 
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Taking a load vector 
 

 2 0; 0; 11; 3; 7.5; 0 TF  


, 
 

where the dimension of forces in kN, moments in kNm, lengths in m, pos-
itive moments are directed relative to the axes of the general coordinate 
system in a clockwise direction, when viewed from a point corresponding 
to the end of the axis, we obtain: 

 

  1
1.87; 2.75; 17.54; 3.89; 2.64; 0.76 T

y

z
EJ

    
, 

 

[ 0.31; 0.65; 3.80; 4.68; 0.21; 0.05; | 0.92; 0.88; 6.51; 9.10;

0.24; 0.74;| 4.38; 0.19; 1.94; 0.62; 2.86; 0.91;] .T

S      

    


 

 
The corresponding diagtams of efforts are shown in Figure 14.33. Fig-

ure 14.34 shows (in axonometric view) the bending moments and torques 
acting on the cut-out node 2. The moments are divided into groups ac-
cording to their location with respect to the coordinate planes. 

 

 
 

Figure 14.33 



 

439 

 

2M   2M   2M 
4.68 0.88 1.94 7.5 0.    0.65 6.51 2.86 3 0.    0.05 0.19 0.24 0.   

 

Figure 14.34 
 

For this node, the equations of projections of forces on the coordinate 
axes are also satisfied. 

 
E x a m p l e. Construct efforts diagrams in the frame (Figure 14.35), 

taking for all bars  
 

2 10 ,yEA h EJ  0.27 yGT EJ , 0.5z yEJ EJ . 
 

The frame is loaded with two generalized nodal forces: 
 

 1 12.0,0, 98.0,40.0, 52.0,0 ,
TF   


  

 2 0,0, 98.0,40.0,64.0,0 .
TF  


  

 

 
 

Figure 14.35 
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Dimension of forces – kN, moments – kNm, lengths – m. 
The matrixes of the direction cosines of the axes of the local coordi-

nate system for the frame bars are presented in the following forms: 
 

1 2 3

1 0 0 0 0 1

0 1 0 , 0 1 0 ,

0 0 1 1 0 0

T T T

   
        
      

  

 

1
4

2.35702 9.42809 2.35702

9.70143 2.42536 0 10

0.57166 2.28665 9.71825

T 
 
     
   

  

 

1
5

2.35702 9.42809 2.35702

9.70143 2.42536 0 10

0.57166 2.28665 9.71825

T 
 
    
   

. 

 
Matrices of internal rigidity of the 4th and 5th bars coincide: 

 

4 5

2.357

0.707

0.354
yK K EJ

 
    
  

  

 
After the formation of the matrix of external rigidity 
 

,TR AKA  
 

we solve the system of equations 
 

Rz F


 
 

and determine the forces in the frame rods by expression 
 

TS KA z
 

. 
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Plots of efforts are shown in Figure 14.36. 
 

 
 

Figure 14.36 
 

E x a m p l e. For the cross-beam system (Figure 14.37) we take the 
bending rigidities for all the bars equal to EJ  and 0.27 .TGJ EJ   

 

 
 

Figure 14.37 
 

The matrix of equilibrium equations, compiled using the equilibrium ma-
trix of the bar a  in the general coordinate system, is written in Table 14.7. 
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THEME 15. VARIATIONAL PRINCIPLES AND VARIATIONAL 
METHODS OF STRUCTURAL MECHANICS. 

FINITE ELEMENT METHOD 
 

15.1. Potential Field of Force. Potential Eenergy 
 

A field of force is a space in which a certain force acts on a material 
point placed there. 

This concept is a general one. Examples of force fields are the gravi-
tational fields of planets, the magnetic field of an object, an electrostatic 
field, etc. A special place among them is taken by potential force fields 
that have two important physical properties: 1) the force of this field is 
positional force, that is  , ,F F x y z ; 2) the work of the field force 

does not depend on the trajectory along which the force applied to a cer-
tain point moves, but depends only on the positions of the start and end 
points; it can be calculated through the integral sum of the corresponding 
elementary works: 

 

 
2

1 2
1

( )

( )
( )

M

M M x y z
M

A F dx F dy F dz   .               (15.1) 

 
Forces acting in a potential force field are called potential. 
 

If the expression (15.1) under the sign of the integral is the full differ-
ential of some function  , ,U x y z , that is: 

 
U U U

dU dx dy dz
x y z

  
  
  

= x y zF dx F dy F dz  ,     (15.2) 

 
then the function U  is called the force-function. 

Taking into account the last condition, we obtain: 
 

2

1 2
1

( )

( ) 2 1
( )

( , , )
M

M M
M

A dU x y z U U   .                 (15.3) 
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The work of the potential force is equal to the difference in the values 
of the force function at the final and initial points of the path of force 
motion. From relation (15.2) it follows that the force function is found 
from the equality: 
 

( )x y zU F dx F dy F dz C    . 
 

The constant C can have any value. As can be seen from equality 
(15.3), the work of force does not depend on C. 

Gravity forces, as well as the elastic forces of an elastic body, are 
both potential in an adiabatic process (i.e., a process that takes place 
without heat exchange with the environment) and isothermal processes 
(i.e., processes that occur in a physical system at a constant temperature). 
For these forces there are force-functions. 

So, for gravity force F , directed along the axis z  (the axis z  is di-
rected vertically upwards), we have zF F   and dA F dz  . Taking 

0U   when 0z   we receive: 
 

.U F z   
 

The elastic force in the centrally stretched rod (Figure 15.1) is di-
rected in the direction opposite to the external force F . 

 

 
 

Figure 15.1 
 

Therefore xF F r x     ( r  – is the rigidity coefficient of the elas-

tic rod). The elementary work of this force is equal to dA r x dx  . 

Counting 0U   at 0x  , we find: 
 

21

2
U r x  . 
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In a potential force field, the projections of forces are equal to the 
partial derivatives of the force function relative to the corresponding co-
ordinates. Indeed, it follows from equality (15.2) that: 

 

, ,x y z
dU dU dU

F F F
dx dy dz

   . 

 
Determining the mixed derivatives for U , we find: 

 
2 2

, yx dFdF d U d U

dy dxdy dx dxdy
  , etc. 

 
Consequently,  

 

, ,y yx z z xdF dFdF dF dF dF

dy dx dz dy dx dz
   . 

 
These relations are necessary and sufficient conditions for the poten-

tiality of the force field. 
The potential energy at the given point M  in the field is the amount 

of work that the force field would have done when moving a material 
point from a given position to one in which the potential energy is conven-
tionally assumed to be zero (pointO ): 

 

( )MOП A . 

 
Since the functions ( , , )П x y z  and ( , , )U x y z  have the same null 

values (follows from the definitions), from (15.3) when 0 0U   we  
obtain: 

( ) 0MOA U U U    , 

 
where U  is the value of the force-function at the point .M  

Thus, we obtain: 
 

( , , ) ( , , )П x y z U x y z  . 
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The work of potential force can be calculated not by expression 
(15.3), but by the formula: 

 

1 2( ) 1 2M МA П П  , 
 

that is, it is equal to the difference in the values of potential energy in the 
initial and final positions of the point. 

Work and energy, of course, are measured in the same units. Remem-
ber that in the SI system the basic units are: meter (m) – unit of length, 
kilogram (kg) – unit of mass, second (s) – unit of time. The unit of work 
and energy is the joule (J). 1 J is equal to work that is accomplished by 
force of 1 N in the path of 1 m. 

The technique often uses the МKGFS system. The unit of work is 1 
kilogram–force–meter (1 kgf·m). It is the work that is performed with a 
force of 1 kgf on a distance of 1 m. 

Relations between units: 1 kGf·m = 9.81 J; 1 J = 0.102 kGfm. 
 

15.2. Potential Energy of Elastic System Deformation 
 

A special case of the general definition of potential energy given in 
Section 15.1 is the determination of the potential energy of an elastic 
deformed body, that is, the field of elasticity forces. 

The potential deformation energy U  of an elastic system is the amount 
of work that internal forces would have done in transferring the system from 
a deformed state to an undeformed one; it is the energy of elasticity forces. It 
is equal in absolute value, but opposite in sign to the actual work of internal 
forces, i.e.: 

 

intU A  . 
 

In particular, for a linearly elastic rod under tension-compression: 
 

2
( )

0

1

2

l
N N dx

U
EA

  . 

 

And in pure bending: 
 

2
( )

0

1

2

l
M M dx

U
EJ

  . 
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In general, for a plane bars system: 
 

2 2 21 1 1

2 2 2

M dx N dx Q dx
U

EJ EA GA


       . 

 
In these expressions, U  is written through efforts (internal forces). 

One can represent U  through functions expressing the displacements 
of the points (cross-sections) of the bars. For example, using differential 
dependencies: 

 

N EA u   and  M EJ y , 
 

we get: 
 

( ) 2

0

1

2

l
NU EA u dx  , 

 

( ) 2

0

1

2

l
MU EJ y dx  . 

 
In some cases, the deformation energy of the bar is conveniently ex-

pressed not through the functions  u x  or  y x , but through the dis-

placements of individual cross-sections. 
For the tensioned bar (Figure 15.2), the horizontal movement of the 

end of the bar is determined by the parameter l . Then, calculating the 
potential energy through the work of external forces, we obtain: 

 
2

( ) 1 1 1 ( )

2 2 2
N EA l

U F l l l EA
l l

       
 

. 

 

 
 

Figure 15.2 
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For a bended bar (Figure 15.3), the force F, causing the displacement
 , is equal to 

3

3EJ
F

l
  . 

Consequently, 
 

2
( )

3 3

1 1 3 3

2 2 2
M EJ

U F EJ
l l

       
 

. 

 

 
 

Figure 15.3 
 
So, the energy of elastic deformation can be expressed through ef-

forts, through the functions of displacements, or through discrete param-
eters of displacements. 

Note: In some questions of mechanics, the concept of specific poten-
tial energy 0U  (in other words, energy density) is used. It is equal to the 

area bounded by the    curve, the   axis and the vertical correspond-
ing to the final value of the relative deformation (Figure 15.4). 

 

 
 

Figure 15.4 
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The potential deformation energy of the body is calculated through 
the specific energy by the expression: 

 

0
V

U U dx dy dz  . 

 

By 0
addU  in this figure, additional potential energy (additional work) 

is denoted. For a linearly elastic bar  
 

addU U . 
 

15.3. Generalized Displacements and Forces.  
Derivatives of Potential Energy Expressions 

 

The deformation energy U, equal to the work of external forces, is de-
termined by the equality: 

 

 

 

1 1 2 2

1

2
1 2

1

2

1 1
.

2 2

n n

T
n

n

U F F F

F F F F

       

 
    
 
  








                  (15.4) 

 

Since A F  
 

, then: 
 

1

2
TU F A F
 

.                                   (15.5) 

 

It is obteined matrix representation of the quadratic form of n varia-
bles 1 2, , , nF F F , where the matrix of the quadratic form is denoted 
with A: 

 

11 12 1

21 22 2

1 2

n

n

n n nn

A

   
    
 
    







. 
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If in the formula (15.5) the result of the multiplication is represented 
in the scalar form of the record, then we obtain: 

 





2
11 1 12 1 2 13 1 3 1 1

2
21 2 1 22 2 2 2

2
1 1

1 1

1

2

1
.

2

n n

n n

n n

n n nn n ij i j
i j

U F F F F F F F

F F F F F

F F F F F
 

         

      

      



 



   (15.6) 

 

The potential energy of the system is always positive. Therefore,  
the recorded quadratic form cannot become negative at any value

1 2, , , nF F F . Such quadratic forms are called positive definite. 
Expression (15.4) can be represented as: 

 

1

2
TU F 
 

.                                    (15.7) 

 

The vector F


 can be expressed through the external rigidity matrix: 
 

F


= R 


, 1R A . 
 

With this in mind, the deformation energy can be written as: 
 

1

2
TU R  
 

.                                  (15.8) 

 
A matrix record of a quadratic form is obtained through generalized 

displacements. In the formula (15.8), the matrix of the external rigidity 
of the system 

 

11 12 1

21 22 2

1 2

n

n

n n nn

r r r

r r r
R

r r r

 
 
 
 
 
 







 

 

is a quadratic matrix. 
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In the scalar form of the record, we obtain: 
 

 2
11 1 12 1 2 1 1

2 2 2
21 2 1 22 2

1 1

1

2
1

.
2

n n

n n

nn n ij i j
i j

U r r r

r r r r
 

         

           




        (15.9) 

 
We differentiate expression (15.6) relative to the variable 1F . Given 

the property of displacements reciprocity i k k i    (matrix A is sym-

metric), we obtain: 
 

11 1 12 2 13 3 1 1
1

n n
U

F F F F
F


          


 . 

 
In general: 

 

i
i

U

F


 


.                                     (15.10) 

 
This expression is a record of Castiliano's first theorem (1875):  

the derivative of the potential strain energy relative to force is equal 
to the displacement of the point of application of this force in its  
direction. 

 
Differentiating expression (15.9) relative to the variable 1  and tak-

ing into account equality i k k ir r  (matrix R  is symmetric), we obtain: 

 

11 1 12 2 1 1
1

n n
U

r r r F


       


 . 

 
In general: 

 

i
i

U
F





.                                      (15.11) 
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This expression is a record of the second Lagrange theorem: in the 
equilibrium position, the derivative of the potential strain energy 
relative to displacement is equal to the corresponding force. 

 
15.4. Total Energy of the Deformable System 

 
From the energy view point, the phenomenon of the body defor-

mation is a process of energies exchange of two systems of forces (force 
fields): internal and external. 

Therefore, for a complete energy characteristic of a body in a de-
formed state, it is not enough to consider only the deformation energy U, 
since it represents a part of the energy of the interacting force fields. 

We will consider only conservative external forces. Their work de-
pends only on the initial and final state and does not depend on the way 
of transition from one position to another. Conservative forces include, 
for example, gravity forces. 

If we take the energy of the system in the initial (undeformed) state 
equal to zero, then the potential П  of external forces in the deformed 
state will be measured by the amount of work that these forces can per-
form when the system is transferred from given state to the initial one. 

The total energy of the loaded body is taken equal to: 
 

,E U P                                       (15.12) 
 

where U  is the potential energy of deformation (elastic potential or, oth-
erwise, the energy of elastic forces, the potential of internal forces); 

P  is the energy of external forces (potential of external forces). 
External forces are gravity forces. With a relatively small change in 

the distance between bodies in near-Earth space, gravitational forces 
practically do not change. Therefore, gravity forces form a homogeneous 
force field, that is, a field in which the value of each force is constant, 
independent of the displacements of their application points. Their work 
is calculated as the work of unchanging forces when moving the system 
from a given position to the initial one. 

For a centrally tensioned rod (Figure 15.5) 

 
P F l   , 
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and for a bended bar loaded with a distributed load (Figure 15.6): 
 

0

( ) ( )
l

P q x y x dx  . 

 

 
 

Figure 15.5  Figure 15.6 
 

Thus, the total energy of the system can be expressed either through 
the functions of displacements or through discrete parameters. 

For the last example: 
 

2

0 0

1
( )

2

l l

E U P EJy dx q x y dx     . 

 

As you can see, the value E  depends on the function ( )y x , that is, it 

is a functional (function of function) ( )E E y . 
For a discrete linear-elastic system, the potential of internal forces is 

(see formula (15.9)): 
 

1 1

1

2

n n

ij i j
i j

U r
 

    . 

 

Replacing the notation of the generalized displacement   by Z , we 
obtain: 

 

1 1

1
.

2

n n

ij i j
i j

U r Z Z
 

    
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The potential of external forces is: 
 

1 1

n n

i i iF i
i i

P F Z R Z
 

    ,  since  iF iR F  , 

 
where iFR  are reactions in additional constraints of the primary system 
of the displacement method. 

Then the expression for the total energy of the system is repre- 
sented as: 

 

1 1 1

1

2

n n n

ij i j iF i
i j i

E r Z Z R Z
  

    .                  (15.13) 

 
15.5. Displacements Variation Principle  

 
This principle expresses the equilibrium condition of a deformable 

system, recorded through its displacements, using the introduced concept 
of total energy .E  

For a tensioned rod (Figure 15.5)  u x  is a function that determines 

the longitudinal displacements of the cross-sections;  u x  are true dis-

placements for which the balance between external and internal forces is 
established. 

In a deformed state, the total energy of the rod is equal to the work of 
internal and external forces on displacements  u : 

 

int( ) ( )extE u U P A W       
 

Let us give the points of the system additional infinitesimal displace-
ments ( )u u x   ; u  is an arbitrary function with infinitesimal ordi-
nates. It is called a variation of function ( )u x . 

In a state u u  , the energy will be equal to: 
 

int int( ) ( )ext extE u u A A W W         . 
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Subtracting the expression  E u  from the last equality, we obtain an 

infinitesimal change in energy (the first variation of energy) caused by 
the variation of the function :u  

 

int( ) ( ) ( )extE E u u E u A W          . 

 
For a system that is in equilibrium, when the displacements ( )u x  oc-

curs, the right-hand side in the last equality is equal to zero, since, in ac-
cordance with the principle of virtual displacements (see Section 7.4), 
the work of all the forces of the system on virtual displacements u  
must be equal to zero: 

 

int 0extA A W      , 
 

therefore,  
0E  .                                        (15.14) 

 
This is a formal notation of the displacements variation principle (the 

Lagrange principle): of all the displacements allowed by the constraints 
of the system, the true displacements ( )u x  have the property that the 
total energy of the system has a stationary value when these dis-
placements occure. Such a property of energy will be observed when it 
has an extreme value for the true displacements in comparison with all 
nearest ones. 

Consider the scheme shown in Figure 15.7. 
 

 
 

Figure 15.7 
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 
21 1

2 2

M dx
E U M P F F F

EJ
          

 
or  

  21 1

2 2
E U y P EJ y dx F F F         . 

 
The terms in these expressions are converted on the basis of the nu-

merical equality of the potential energy of elastic deformation and the 
actual work of external forces. 

We investigate the change in the total energy of the system depending 
on the change (variation) of the deformed beam axis. For example, we 
increase the ordinates of the deflections of the beam axis by a factor of k. 
We get: 

 
2 2 2

2

2 2 2

k k k
E EJ y dx kF F kF F k

 
           

 
 . 

 
Energy is represented by a function of the second degree of .k   

A graphic illustration of the dependence  E
k

F 
 is shown in Figure 15.8. 

 

 
 

Figure 15.8 

 

Е
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When 1k  , that is, in the real state of equilibrium,  min E y  takes 

place. 
In this example, it would be possible to vary not the equation of the 

bent beam axis, but the corresponding function of bending moments, i.e., 
the stress state. 

The result of the calculations would naturally be the same. 
Let us consider a second example. In a discrete linearly deformable sys-

tem under one-parameter loading, all generalized parameters are intercon-
nected linearly. Therefore, using the parameter of a generalized displace-
ment Z , we can write the total energy in the form: 

 

2

1 1 1

1

2

n n n

ij i j iF i
i j i

E Z r Z Z Z R Z
  

    , 

 

where ,i jZ Z  are the components of the basis vector of the system  

displacements, corresponding to the unit parameter of the generalized 
load .F  

Since there is equality for the system: 
 

1 1 1

n n n

ij i j iF i
i j i

r Z Z R Z
  

    , 

 
then the expression for energy can be represented in this form of notation: 

 
2

2

E Z
Z 


, 

 

where 

1 1

n n

ij i j
i j

r Z Z
 

    . 

 

Function  E
Z


 has a minimum at a point (1.0; –0.5). 

We increase the displacement Z  by a factor .k  Then, given that for 
the final load value the parameters F  and Z  are both fixed, expressing 
through the actual work of external forces, we obtain: 
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2
2

1 1 1

2
2

2

1
.

2 2

n n n

ij i j iF i
i j i

k
E Z r Z Z k Z R Z

k
k F Z k F Z F Z k

  
  

 
     

 

  
 

 

The dependence  E
k

FZ
 has the same form as for the beam. This 

leads to the conclusion that of all possible deformed states of the system, 
the true state occurs at 1k  . The total energy of the system in this state 
is minimal. 

Investigation of the behavior of functionals E  at stationary points us-

ing the second variation 2E  gives reason to judge the quality of the 
system equilibrium. P.G.L. Dirichlet (German mathematician, 1805–
1859) proved that: 

– if 0E   and 2 0E  , then minE E  (stable equilibrium); 

– if 0E   and 2 0E  , then maxE E  (unstable equilibrium); 

– if 0E   and 2 0E  , then constE   (indifferent equilibrium). 
A thorough study of the equilibrium states of mechanical systems will 

be carried out in the section “Stability of structures”. 
In the problems of the structural statics, methods for calculating sta-

ble systems are studied. Therefore, the stationarity condition 0E   for 
them is identified with the condition of minimum total energy. 

 
15.6. Ways to Solve Variational Problems 

 
The functions  y x , that realize the extremum of the functional 

 E y , can be found in two ways: 

1. By solving differential equations obtained from condition 0E   
(15.14). 

2. Using the so-called direct methods of variations calculus. 
The problem of finding  y x  by solving the differential equation is 

addressed in those cases when, for the element (object) under study, the 
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energy can be written as a function depending on the displacements and 
their derivatives of the first, second, and higher order. A necessary con-
dition for the minimum of a definite integral 

 

 ( ), , , ,
b

к

a

E Ф y y y y dx    , 

 

that is, the stationarity condition  
 

0
b

a

E Фdx     

 

is reduced for an arbitrary choice of function y  to the Euler – Lagrange 
differential equation: 

 

 
2

2 ( )
1 0

к
к

к к

Ф d Ф d Ф d Ф

y d x y yd x d x y

       
                  

 . 

 

As an example, we show the solution to the problem of bending the 
cantilever beam on an elastic Winkler base (Figure 15.9). 

 

 
 

Figure 15.9 
 

We determine the total energy of the interacting forces: 
 

 
2

2

0 0

,
2 2

l lEJ k y
E y q y dx Ф y y dx

 
      

 
  . 
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In this case: 
 

Ф
k y q

y


 


,      0

Ф

y





,      
Ф

E J y
y

 


. 

 

The differential equation corresponding to condition 0E  , will 
have the form: 

 

 E J y k y q
   . 

 

For 0k   we get the usual differential equation of transverse bending: 
 

 E J y q
  . 

 
The general solution of the equation will contain four arbitrary  

constants. To obtain a particular solution, four additional conditions 
must be set. 

Direct methods of variations calculus allow us to reduce the problem 
of finding the functional minimum to the problem of finding the mini-
mum of a function of many variables by solving a system of linear alge-
braic equations. These include the Rayleigh – Ritz, Bubnov – Galerkin 
methods, the callocation method, etc. Let us show the essence of direct 
methods using the example of the Rayleigh – Ritz method. 

From an infinite system of functions 1 2( ), ( ), ... , ( ), ...,rx x x    sat-

isfying the boundary conditions of the problem, we select the first r 
functions ( )i x  and form a new function rf  of the following form, us-
ing a linear combination: 

 

1 1 2 2
1

( ) ( ) ( ) ... ( ) ( )
r

r r r i i
i

f x a x a x a x a x


         , 

 
where ia  are the arbitrary coefficients. Functions ( )i x  are called coor-
dinate or basic functions. 

The functional ( ( ))E Ф х  after replacing ( )Ф х  by ( )rf x  turns into a 

function 1 2( , ,..., )rE a a a  of r  independent variables. The necessary 
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condition for the extremum of a function of several variables is the zero-
ing of partial derivatives of the first order, i.e.: 

 

0
i

E

a





       1, 2 ,...,i r .                         (15.15) 

 

Solving the system of equations (15.15), we find the values of the pa-
rameters ia , and hence obtain an approximate solution of the stationarity 

conditions 0E  . 
 

15.7. Calculating Elastic Systems Based on the  
Displacement Variation Principle 

 
The displacement of any point (cross-section) of an element (Figu- 

re 15.10), taking into account generally accepted assumptions, can be un-
ambiguously expressed through nodal (generalized) displacements. Thus, 
the horizontal displacement of cross-section C, as follows from Figu- 
re 15.11 can be determined by the formula: 

 

1 4 1 1 4 41 ( ) ( )
x x

u Z Z Z f x Z f x
l l

      
 

,          (15.16) 

 

where 1( )f x , 4 ( )f x  are the basis (coordinate) functions. 
 

 
 

Figure 15.10 
 

Figure 15.11 

 
To determine the displacements caused only by nodal displacements 

2Z , 3Z , 5Z  and 6Z , we use the differential equation: 
 

4

4
0

d v

dx
 . 
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Its general solution has the form: 
 

3 2
1 2 3 4v C x C x C x C    . 

 
We find, for example, the equation of the bended axis caused by load-

ing the bar in the form 2 1Z  . The boundary conditions for this case: 
 

0 1; 0 0x v x v    ; 
 

0; 0x l v x l v    . 
 

Having solved the fourth-order system of equations, we obtain the 
values of arbitrary constants 1C , 2C , 3C , 4C . The equation of the bend-
ed axis is written as: 

 
2 3

2 3

3 2
1

x x
v

l l
   . 

 
For other unit nodal displacements of the bar clamped at the ends, the 

deflection curves are recorded in Table. 15.1. 
 

Table 15.1 
 

№ 
The scheme of the bar. 
Kind of displacement 

Bended axis 
equation 

1 2 3 

1 
1

 xf2

x
 

2 3

2 2 3

3 2
( ) 1

x x
f x

l l
    

2 1

3f x

x
 

2 3

3 2

2
( )

x x
f x x

l l
    
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Table 15.1 (ending) 
 

1 2 3 

3 x
1

xf  5

 

2 3

5 2 3

3 2
( )

x x
f x

l l
   

4 
1

f x6

x 2 3

6 2
( )

x x
f x

l l
    

5 1

f x

x

7

2 3

7 2 3

3
( ) 1

2 2

x x
f x

l l
    

6 

8f x

x

1

 

2 3

8 2

3
( )

2 2

x x
f x x

l l
    

7 1
f x9

x
 

2 3

9 2 3

3
( )

2 2

x x
f x

l l
   

 
Using the forces action independence principle, the vertical dis-

placement of the cross-section C  (Figure 15.9) can be represented as: 
 

2 3 2 3

2 32 3 2

2 3 2 3

5 62 3 2

2 2 3 3 5 5 6 6

3 2 2
1

3 2

( ) ( ) ( ) ( ).

x x x x
v Z Z x

l l l l

x x x x
Z Z

l l l l

Z f x Z f x Z f x Z f x

   
            

   
   

           
   

   

        (15.17) 
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The expression for determining the rotation angle of the cross-section 
is obtained by differentiating ( )v v x  relative to x . 

For a bar clamped at one end and hinge-supported at the other end, 
the deflection curves for unit nodal displacements and the corresponding 
displacements functions are also shown in Table. 15.1. 

In the general case, for a discrete system, the expression for determin-
ing the displacement of a certain point can be represented as: 

 

1 1 2 2( ) ( ) ... ( )n nZ Z f s Z f s Z f s    ,            (15.18) 
 

where  if s  are the basic functions corresponding to the generalized 

displacements iZ . 
The number of such equations corresponds to the number of deform-

able elements of the system and the number of displacements types (lin-
ear, angular). 

For bars systems, these equations will be accurate, for continuum sys-
tems they will be approximate. 

In connection with the above, the total energy of the system can be 
represented as a function of n generalized displacements (coordinates) 
and load: 

 

1 2( , ,..., , )nE E Z Z Z F . 
 

Then the stationarity condition: 
 

1 2
1 2

... 0n
n

E E E
E Z Z Z

Z Z Z

  
        

  
 

 

with independent variations iZ  and constant load F  will allow us to 

get n  equations to determine iZ : 
 

1 1 1

0,

. . . . . . . .

0.
n n n

E U P

Z Z Z

E U P

Z Z Z

  
  

  

  
  

  

                           (15.19) 
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For a linearly elastic system, the total energy is calculated by the for-
mula (15.13), therefore, equations (15.19) in the expanded form of writing 
take the form of canonical equations of the displacement method: 

 

11 1 12 2 1 1

1 1 2 2

... 0,

. . . . . . . . . . .

... 0.

n n F

n n nn n nF

r Z r Z r Z R

r Z r Z r Z R

    

    
 

 

For nonlinearly deformable systems, equations (15.19) will be non-
linear relative to iZ . 

Due to the characters of equations (15.18) for continuum systems, on-
ly approximate values iZ  may be determined. In this case, equations 
(15.19) are called the equations of the Ritz method, which, as it was not-
ed earlier, refers to direct methods of variations calculus. 

 
15.8. The Essence of the Finite Element Method 

 
The finite element method (FEM) is an effective numerical method 

for solving applied problems and is widely used to analyze various struc-
tures. This method is well adapted to computer implementation. Accord-
ing to a single methodology, bars, plates, massives and combined struc-
tural systems are calculated. Its essence is as follows. The system under 
study is mentally divided into many finite elements (disjoint areas), that 
is, a transition is made from a given design scheme to a discrete one.  

The shape of the finite element (FE) is predetermined by the features 
of the analysed object (system, structure). In bars systems, FE is taken as 
a bar (as a rule) with constant longitudinal and bending rigidity. For 
plates and thin-walled spatial continuum systems, triangular or rectangu-
lar (ge-nerally quadrangular) finite elements are most often used; for 
solving three-dimensional problems, volume finite elements in the form 
of a tetrahedron or parallelepiped are used. The choice of the shape and 
sizes of finite elements has a significant effect on the calculation results.  
But the results, of course, should allow you correctly evaluate the stress-
strain state of the initial system. Representation of the system under 
study as a sufficiently large set of finite elements leads to an increase in 
the calculation accuracy, but significantly increases the dimension of the 
problem, what is associated with a significant amount of calculations. 
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Readers who are interested in questions of estimation of discretization 
error can find relevant recommendations in the scientific literature. 

The points at which FEs are connected are called nodes. We need to 
distinguish rigid and hinge nodes. In a rigid node, it is assumed that there 
are constraints ensuring the continuity of linear and angular FE dis-
placements adjacent to this node. The constraints in the hinge node allow 
saving the continuity of linear movements. Nodal displacements and the 
corresponding nodal forces are taken as generalized. 

The idea of the method is to describe the stress-strain state of the FE 
through generalized displacements Z  of nodes and to establish their con-
nection with the load acting on the system. To implement this idea, it is nec-
essary to obtain a FE stiffness matrix.  

Since the displacements function of the original system is unknown, 
it must be set. If in the Ritz method it was assumed that the basis func-
tions are determined by one expression on the entire region of the sys-
tem, then an alternative approach is implemented in the FEM. It consists 
in the fact that at each FE unknown functions of displacements are re-
placed by approximating ones so that the displacements of all element 
points are expressed through the nodal ones. For one-dimensional  
elements, taking into account the remark about the rigidity constancy, 
the displacement function is accurate (see Section 15.7), for two-
dimensional and three-dimensional FEs, these functions are written ap-
proximately, most often in the form of polynomials. Their selection is a 
rather difficult task. The accuracy of the final results substantially de-
pends on the successful solution of this problem. Using approximating 
functions and based on the variational principles of structural mechanics, 
one of the main tasks of the FEM is solved – the determination of stiff-
ness matrices of finite elements. 

Since each bar in the composition of the system under study has its 
own orientation, stiffness matrices are first constructed in the local coor-
dinate system, and then, when moving from the local system to the gen-
eral, they are transformed. The stiffness matrix of the entire system is 
obtained by the corresponding combination of stiffness matrices of indi-
vidual elements. 

The resolving equations of the FEM are written in the form: 
 

0FR Z R 
 

,                                 (15.20) 
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where FR


 is the vector of  reactions caused by the given load, which is 
equal to the vector of nodal loads taken with the opposite sign.  

The total load on the node is defined as the sum of the loads from the 
elements adjacent to the node. Since the non-nodal load is replaced by 
the equivalent nodal load in the directions Z


, then the vector of rections  

 

FR 


  1 2, ,..., T
F F nFR R R F 


, 

where  

 1 2, ,..., T
nF F F F


 

 

is the vector of nodal loads. 
After solving the system of equations (15.20), the displacements Z  of 

nodes in the general coordinate system become known. To calculate the 
forces in a finite element, it is convenient to first find the nodes displace-
ment vector Z 


 in the local coordinate system, and then determine the 

reactions at the ends of the FE using the stiffness matrix R . For-mulas for 
the corresponding transformations are given in sections 15.9 and 15.10. 

This form of calculation corresponds to the FEM variant “in dis-
placements”. It is the most common form. 

Another approach to solving the problem with the help of FEM is al-
so possible. The stress-strain state of the FE must be described by a finite 
set of generalized nodal forces, and then establish their relationship with 
the load. This form of calculation corresponds to the FEM “in efforts”. 

 

15.9. Bar Stiffness Matrix in the Local Coordinate System 
 

There are several ways to obtain stiffness matrices of separate bars. 
One of the simplest is a method based on the known conditions of the 
displacement method. 

Each end of the bar adjacent to the rigid node has three degrees of 
freedom: linear displacements in the horizontal and vertical directions 
and the angle of rotation. The force factors corresponding to these dis-
placements are the reactive forces 1R , 2R , 4R , 5R  and the moments 

3,R  6R , located at the FE edges. (Displacements, reactions, stiffness 
matrix and its elements in the local coordinate system are indicated by 
letters with strokes). The stiffness matrix (the matrix of unit reactions) 
converts the displacement vector  
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 1 2 3 4 5 6, , , , , TZ Z Z Z Z Z Z      


 
 

into the vector of reactions at the ends of FE, i.e., there is the relation: 
 

1 111 12 16

2 21 22 26 2

61 62 666 6

. . . .

R Zr r r

R r r r Z
R Z

r r rR Z

       
               
    
           




 


. 

 
The positive directions of the reactions iR  correspond to the positive 

directions of iZ  . 
Elements of the matrix R  are reactions in constraints caused by unit 

displacements 1iZ    (Figure 15.12). 

In the first column, the reaction values caused by 1 1Z    are recorded, 

in the second column – caused by 2 1Z    etc. Therefore, to calculate the 
elements of R  matrix, we can use the data from the table used in the 
displacement method to determine the reactions in the supports of a bar 
with constant cross-section. 

The matrix R   has the form: 
 

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

EA EA

l l
EJ EJ EJ EJ

l l l l
EJ EJ EJ EJ

l ll lR
EA EA

l l
EJ EJ EJ EJ

l l l l
EJ EJ EJ EJ

l ll l

  
 
 
 
 
 
    
 
 
 

   
 
 

  

.  (15.21) 
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Figure 15.12 
 

For bars with other fixing conditions, matrix R  elements are calcu-
lated similarly. 
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Consider methods based on the use of approximating displacement 
functions. The necessary calculation procedure for one of them, for ex-
ample, for a bar fixed at the ends is as follows. 

1. In a linearly deformable bar the longitudinal and transverse dis-
placements of the cross-sections are not interconnected. Therefore, the 
functions that describe the character of the change in displacements 
along the length of the bar will be different for them. In accordance with 
the differential equation  

 
N E A u , 

 
we will approximate the displacements of the bar cross-sections along its 
axis by a linear function: 

 

1 4( )u x a a x  .                                (15.22) 
 

The bent axis of the bar in the absence of distributed load along its 
length is described by a third-order curve, which is a consequence of the 
differential equation  

 

  0IV  . 
 

Therefore, the approximating polynomial of the third degree allows 
us to precisely set the function of the displacements.  

Let us assume that 
 

2 3
2 3 5 6( )v x a a x a x a x    .                     (15.23) 

 
There are unknown parameters ia  in expressions (15.22) and (15.23); 

their number is equal to the number of degrees of freedom. 
Functions ( )u x  and ( )x  are called form functions 
The rotation angle of the bar cross-section is determined by the value 

of the first derivative: 
 

2
3 5 62 3

d
a a x a x

dx


   .                        (15.24) 
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2. Using the dependences (15.22), (15.23) and (15.24), we represent 
the displacements vector 

 

, ,
T

d
u

d x

 
   

 


 

 

in the following form: 
 

,L a 
 

                                       (15.25) 
 

where L  is matrix of coefficients: 
 

 
L = 

1  x  

 1 x  x2 x3             (15.26) 

   1  2x 3x2  
 

a


 is the vector of unknown parameters: 
 

 1 2 3 4 5 6
Ta a a a a a a


. 

 

3. For the edge cross-sections (x = 0, x = l) of the bar, using expres-
sions (15.25) and (15.26), we obtain: 
 

1

2

3

4

5

6

Z

Z

Z

Z

Z

Z

 
  

 
  
 
  

 

 

= 

1      

. 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 

 1     

  1    

1   l    

 1 l   2l  3l  

  1  2l  23l  
 

or 
Z H a 
 

,                                     (15.27) 
 

where H  is the coupling matrix. 
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4.  From (15.27) it follows that: 
 

1a H Z 


,                                    (15.28) 
 

in this case  
 

1H  = 

1      

. 

 1     

  1    

-1/ l    1/ l    

 -3/ 2l  -2/ l   3/ 2l  -1/ l  

 2/ 3l  1/ 2l   -2/ 3l  1/ 2l  
 

5. The displacement vector 


 using dependencies (15.25) and 
(15.28) is represented in the form: 

 
1L H Z  

 
.                                 (15.29) 

 
Performing matrix multiplication, we obtain: 

 

1 41
x x

u Z Z
l l

      
 

, 

 

2 3 2 3

2 32 3 2

2 3 2 3

5 62 3 2

3 2 2
1

3 2
,

x x x x
Z x Z

ll l l

x x x x
Z Z

ll l l

   
              

   
   

           
   

 

 

2 2

2 32 3 2

2 2

5 62 3 2

6 6 4 3
1

6 6 2 3
.

d x x x x
Z Z

dx ll l l

x x x x
Z Z

ll l l

                 
   
   

           
   
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The expressions for u  and   coincide with those recorded earlier in 
section 15.7. 

Thus, using (15.22) and the approximating polynomial (15.23), exact 
functions are obtained that allow one to calculate the horizontal dis-
placement, deflection, and rotation angle of any cross-section of the bar. 

6. Nodal displacements 1Z  , 2Z  , 3Z   and 4Z  , 5Z  , 6Z   of the bar AB  

correspond to the reactions 1R , 2R , 3R  and 4R , 5R , 6R , allowing to 

find the forces N , Q  and M  in the edge cross-sections. To determine 
them, we use differential dependencies: 

 

N du

EA dx
 ,      

3

3

Q d

EJ dx


 ,      

2

2

M d

EJ dx


 . 

 
Differentiating in the expression (15.25) the first and third rows one 

time, and the second row – three times, we find the components of the 
vector 

3 2

3 2
, ,

T
du d d

k
dx dx dx

  
  
 


, 

 
with help of which the forces ,N  Q  and M  in the intermediate cross-
sections of the bar are determined: 
 

1 ,k B H Z
 

                                  (15.30) 
 

where 
 

B  = 

   1   

.     6 

    2 6x 
 
To determine the forces in the edge cross-sections of the bar, we form a 

matrix АВB , the first three rows of which correspond to the matrix B  for 
0,x   and the rest – for x l . 
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АВB  = 

   1   

. 

     6 
    2  
   1   
     6 
    2 6l 

 
Then the internal forces vector  
 

 , , , , , T
H H H K K KS N Q M N Q M


 

 
can be calculated using the expression: 

 
1 ,АВ АВS D B H Z 

 
                           (15.31) 

 
where D  is the diagonal stiffness matrix:  

 

 , , , , ,D diag EA EJ EJ EA EJ EJ . 

 
7. The directions of positive efforts N , Q  and M  in the edge cross-

sections of the bars (vector )АВS


 and positive reactions 1R , 2R , 3R , 

2 ,R  5R , 6R  (their directions coincide with the directions of the compo-

nents of the vector )S


 do not coincide. The relationship between them 
can be established using correspondence matrix of the efforts signs by 
the expression: 

 

ABR I S 


,                                  (15.32) 
 

where                            1,1, 1,1, 1,1I diag    . 
 
Substituting the expression (15.31) in (15.32), we obtain: 

 
1

АВR I D B H Z 


.                           (15.33) 
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From (15.33) it follows that the reactions matrix is determined by the 
expression: 

 
1

АВR I D B H   .                              (15.34) 
 

In the case under consideration, the reactions matrix (which is also the 
stiffness matrix) has the form shown earlier in formula (15.21). 

The second method to obtain the stiffness matrix of the bar, based on the 
use of the Lagrange principle, is as follows. 

With the well-known equation of the bended axis (see section 15.7) of 
the bar, its rigidity matrix can be obtained from the total energy stationary 
condition. 

Let us write the expression of the total energy for a bar clamped (fixed) 
at its ends and loaded with a distributed load: 

 

 

 

 

   

2 2

0

22
2 2 3 3 5 5 6 6

2
0

2
1 1 4 4

2 2 3 3 5 5 6 6

2 2

2

2

,

l

l

EJ EA u
E q x dx

d Z f Z f Z f Z fEJ

dx

d Z f Z fEA

dx

q x Z f Z f Z f Z f dx

  
     

 

            

  
  

 
       




      (15.35) 

 

 
where 1f , 4f  are the basis functions for determining the longitudinal 
displacements of the bar cross-sections;  

2f , 3f  5f , 6f  are functions determining the deflections of the 
bar (table. 15.1). 

After the necessary transformations, we obtain: 
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 

 
   

1 2 3 4 5 6

2 2 2 2
2 3 5 6 2 33 3 2

0

2 5 2 6 3 5 3 63 2 2

2 2
5 6 1 1 4 42 2

2 2 3 3 5 5 6 6

, , , , ,

12 4 12 4 6
2

2

12 6 6 2
2 2 2 2

6
2 2

2

.

l

E Z Z Z Z Z Z

EJ
Z Z Z Z Z Z

l ll l l

Z Z Z Z Z Z Z Z
ll l l

EA
Z Z Z Z Z Z

l l

q x Z f Z f Z f Z f dx

      

             

           

         


       



  (15.36) 

 

In this expression, the total energy is represented by a function of six 
independent variables. 

Integrals of the form 
 

 
0

l

iq x f dx  

 
give us the values of the support reactions for the beam pinched at the ends 
when loading it with a distributed load  q x . To prove this statement, we 

consider the same beam (Figure 15.13) in two states: in the state ,a  the 

beam is loaded with a distributed load  q x , in the state b  the left end of 

the beam is moved by 2 1.Z    Remember that the positive directions of 
reactions correspond to the positive directions of displacements. 

 

 
 

Figure 15.13 
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The virtual work of the forces of state a on the displacements of  
state b is: 

 

 
1 2 3

2 3
0

3 2
1 1

l

аб A
x x

W R q x dx
l l

 
      

 
 . 

 
The work of the forces of state b on the displacements of state a is zero: 

 
0baW  . 

 
Based on the reciprocity theorem: 

 

ab baW W . 
 

Hence,  
 

 
1 2 3

2 3
0

3 2
1

l

A
x x

R q x dx
l l

 
    

 
 . 

 
When calculating AM  for an auxiliary state, we will take what is 

shown in table. 15.1 (see section 2). Having determined the possible work 
of the forces of one state on the displacements of another (in the forward 
and reverse directions), based on the reciprocity theorem, we obtain: 

 

 
1 2 3

2
0

2l

A
x x

M q x x dx
l l

 
    

 
 . 

 
We find by similar calculations: 

 

 
1 2 3

2 3
0

3 2l

B
x x

R q x dx
l l

 
   

 
 , 

 

 
1 2 3

2
0

l

B
x x

M q x dx
l l

 
     

 
 . 
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Note that when a different type of load (concentrated forces, mo-
ments, etc.) is applied to the bar, the support reactions can also be calcu-
lated using the reciprocity theorem. 

The necessary conditions for the minimum function (15.36) of six 
variables are: 

 

0
i

E

Z





,      1, 6i  . 

 
Applying them to the expression (15.36), we obtain a system of equa-

tions relating the displacements and reactions of the edge cross-sections: 
 

1 4

2 3 5 63 2 3 2

2 3 5 62 2

1 4

2 3 5 63 2 3 2

2 3 5 62 2

0 0 0 0 0;

12 6 12 6
0 0 ;

6 4 6 2
0 0 ;

0 0 0 0 0;

12 6 12 6
0 0 ;

6 2 6 4
0 0 .

A

A

B

B

EA EA
Z Z

l l
EJ EJ EJ EJ

Z Z Z Z R
l l l l
EJ EJ EJ EJ

Z Z Z Z M
l ll l

EA EA
Z Z

l l
EJ EJ EJ EJ

Z Z Z Z R
l l l l

EJ EJ EJ EJ
Z Z Z Z M

l ll l

   

    

    

  

      

     


















 

 
In matrix form, the system has the form: 

 

R Z F  
 

, 
 

where R  is the stiffness matrix of the bar (15.21); 

 1 2 3 4 5 6, , , , , TZ Z Z Z Z Z Z      


 is the vector of nodal displacements; 

 0, , , 0 , , T
A A B BF R M R M  


 is the vector of nodal forces. 

Another way to solve this problem is based on the general equations 
of structural mechanics. Given the initial conditions, we write the bar 
equilibrium matrix in the form: 
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a  =

cos   sin

l


 

sin

l


  

. 

sin   cos

l


  

cos

l


 

0 –1 0 

cos  sin

l


  

sin

l


 

sin  cos

l


 

cos

l


  

0 0 1 

 
Then for 0   we get: 

 

TR a k a  
 

–1 0 0 

× 

EA

l
 0 0 

×

0 
1

l
  

1

l
 

0 –1 0 0 
4EI

l
 

2EI

l



1 0 0 

0 
2EI

l

 4EI

l
 0 

1

l
 

1

l
  

0 0 1 

 

× 

–1 0 0 1 0 0 

= 0 
1

l
  –1 0 

1

l
 0 

0 
1

l
 0 0 

1

l
  1 
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3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

.

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

EA EA

l l
EJ EJ EJ EJ

l l l l
EJ EJ EJ EJ

l ll l
EA EA

l l
EJ EJ EJ EJ

l l l l
EJ EJ EJ EJ

l ll l

  
 
 
 
 
 
   
 
 
 

   
 
 

  

 

 
The dimensions of the matrix R  depend on the conditions for fixing 

the ends of the bar. For a bar with one pinched (fixed) end, and second 
hinge-supported end, the stiffness matrix will have dimensions 5 5 , for 
a bar with a hinged support on the left and right ends, the matrix R  has 
dimensions 4 4 . 

The stiffness matrix of the bar connecting the nodes i  and j , can be 
represented in block form: 

 
ii ij

ji jj

R R
R

R R

  
      

. 

 
The sizes of the blocks depend on the number of constraints superim-

posed on the bar in each node. For a bar hinge-supported in node i and 
rigidly-pinched in the node j , the dimensions of the matrix and its 
blocks will be as follows: 

 

 5 5R  
   

   

2 2 2 3

3 33 2

ii ij

ji jj

R R

R R

 



  
 
  
  

. 
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If both ends of the bar are hinge-supported, then: 
 

 4 4R  
   

   

2 2 2 2

2 22 2

ii ij

ji jj

R R

R R

 



  
 
  
  

. 

 
15.10. Bar Stiffness Matrix in the General Coordinate System 

 
The bar stiffness matrix can be obtained the easiest way using the 

general equations of structural mechanics by the expression: 
 

TR a k a , 
 

where a  is the equilibrium matrix of the bar in the general coordinate 
system. We show the formation of the stiffness matrix for the truss rod 
(1–2) of the truss shown in Figure 15.14. 
 

 
 

Figure 15.14 
 

The rod is adjacent to the hinge nodes. We introduce the links at the 
rod ends that impede their displacements along the directions of the co-
ordinate axes (Figure 15.15, a). We show in the same figure the positive 
directions of the nodes displacements. 
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Figure 15.15 
 
The stiffness matrix for the rod (1–2) has the form: 

 

(1 2)R  

11r  12r  13r  14r  

21r  22r  23r  24r  

31r  32r  33r  34r  

41r  42r  43r  44r  

 
Figure 15.15, b shows the displacement of node 1 in the direction  

of 1Z  and indicates the positive directions of the reactions in the intro-
duced links. 

We calculate (1 2)R  and present the result in block form. 
 

(1 2)
1 2 1 2 1 2

TR a k a
     ;     1 2 0.6, 0.8, 0.6, 0.8Ta     , 

 

1 2 2 / 2.5.k EA   
 

(1 2)R    

0.288 0.384 -0.288 -0.384 

 EI =

(1 2)
11R   (1 2)

12R   
0.384 0.512 -0.384 -0.512 

-0.288 -0.384 0.288 0.384 (1 2)
21R   (1 2)

22R   
-0.384 -0.512 0.384 0.512 
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The reaction values in additional links caused by the displacement 

1Z   are given in the first column of the matrix (1 2)R  . 
In other cases, when it is necessary to organize the transition from the 

stiffness matrix in the local coordinate system to the stiffness matrix in 
the general coordinate system, it is necessary to use the transformation 
rules of the linear operator matrix in the transition from the old basis to 
the new one. 

Linear displacements in the local and general coordinate systems 
(Figure 15.16) are related by the relations: 

 

1 1 2cos sin ,Z Z Z      
 

2 1 2sin cos .Z Z Z       
 

 
 

Figure 15.16 
 

The rotation angle of the bar end section does not change when the 
coordinate system is changed. Therefore, the matrix of the rotation oper-
ator has the form: 

 

cos sin 0

sin cos 0 .

0 0 1

C

  
     
  

 

 
Since the directions of displacements at both ends of the bar coincide, 

transformations of the displacements 4 ,Z   5Z  and 6Z   to 4Z , 5Z and 

6Z  are performed using the same matrix. Consequently, 
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C
Z Z V Z

C

    
 

  
.                           (15.41) 

 

Since      1 ,TV V        then      TZ V Z 
 

. 
 

The transformation of the stiffness matrix (matrix of the linear opera-
tor) during the transition to the basis Z


 is performed by the expression: 

 
TR V R V . 
 

For further discussion, we also present the matrix R  in block form: 
 

ii ij

ji jj

R R
R

R R

 
  
  

. 

 
15.11. Stiffness Matrix Formation for the Entire System 

 
The finite element model of the bars system, as already noted, is rep-

resented as a set of bars connected in nodes. The system node displace-
ments cause the same end displacements of the bars (finite elements) 
adjacent to this node. The resulting forces in the bars of the primary sys-
tem of the displacement method are determined using the stiffness matri-
ces of the bars. The reactions in the links superimposed on the node of 
the system can be found as the sum of the terminal reactions in the links 
of the bars adjacent to the node. For example, the reaction force in the 
link along the X axis direction will be equal to the sum of the reaction 
forces in the links of the bars in the same direction. Reactions in other 
directions are defined in a similar way. 

In the general case, the vector iR


 of total reactions for the i-th node 

of the system can be determined through the vectors ( )e
ir


 of end reac-
tions in elements adjacent to this node, by expression: 

 
( ) ( ) ( )

1 21 2

( ) ( ) ( ) ,

e e e
i i i i

e i e i e i

e e e
i j nii ij in

e i e i e i

R r r Z r Z

r Z r Z r Z

  

  

    

   

  

  

    

  
            (15.42) 
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where ( ) ( ) ( )
1 2, , ,e e e

ini ir r r
    – reaction vectors at the end of an element ad-

jacent to a node caused by displacements 1 1 ,Z   2 1 , , 1.nZ Z   

Symbol e i  means summation over all elements adjacent to the node i . 
For a rigid node, vector iR


 has three components: the first component 

of the vector indicates the value of the reactive force in the direction of 
the axis X , the second – in the direction of the axis Y , the third gives 
the value of the reactive moment. 

If all the bars are connected at nodes rigidly, the vectors 1 2, , ,i i inr r r
  

also contain three components. If some bar adjoins the node articulated, 
then for the operation of adding vectors in the i-th node, the third compo-
nent of the end reaction vector should be taken equal to zero. 

Having written expression (15.42) for each node of the structure, we 
present a system of equations connecting nodal reactions and displace-
ments in the form: 

 
( ) ( ) ( ) ( )

11 12 1 1
1 1 1 1

1 1

( ) ( ) ( ) ( )
1 2

( ) ( ) ( ) ( )
1 2

. . . .

. . . .

e e e e
j n

e e e e

e e e e
ij ini ii i

e i e i e i e i

m me e e e
mnmjm m

e m e m e m e m

r r r r
R Z

r r r rR Z

R Z
r r r r

   

   

   

 
                        
  

   

   

   

 

  
 

  

 







 
 

 

 
or abbreviated: 
 

zR R Z
 

, 
 

where R  is the stiffness matrix of the entire system. 
From the presented form of recording the matrix R  it follows that its 

elements are calculated through the elements of the stiffness matrices of 
individual finite elements. If the nodes i  and j are not interconnected by 

elements, then 0ijr  ; if they are connected by several elements, then 

the corresponding element of the stiffness matrix is calculated as 
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( )

,
.e

ij ij
e i j

r r


   

 
In block form, the matrix R  is represented as: 
 

11 12 1

1 2

1 2

. . .

. . .

n

i i in

n n nn

R R R

R R R R

R R R

 
 
 
 
 
 
  







, 

 
where ijR is the reaction block in the links of the i-th node caused by the 

unit displacements of the links of the j-th node. 
In the stiffness matrix of the entire system formed according to the 

indicated principle, support nodes had not been taken into account. The 
displacements of the non-deformable supports are equal to zero. There-
fore, if it is known in advance that 0jZ  , then the j-th row and the j-th 

column of the obtained matrix R  should be deleted. The size of the ma-
trix must be reduced. In the case of automated computing, a new num-
bering of unknowns will also be required. If the dimensions of the matrix 
will not be changed, then it is necessary to take the indicated row and 
column as zero, but the element jjr  of the matrix R  must be taken equal 

to one or to a number other than zero (so that det 0R  ). 
We will show a graphical scheme of stiffness matrix formation of the 

entire system from the stiffness matrices of its elements.  
For the frame shown in figure 15.17, the stiffness matrix in block 

form is written as: 
 

11 12 13

21 22 23

31 32 33

R R R

R R R R

R R R

 
   
  

. 
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Figure 15.17 
 

The contribution of each of the five elements (numbers are written in 
squares) to the corresponding blocks of the stiffness matrix of the entire 
frame is shown schematically in Figure 15.18, a – e. The stiffness matrix 
of the entire frame is shown in Figure 15.18, f. 

 

 

Figure 15.18 
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The numbers of degrees of freedom for each node of the frame corre-
spond to the numbers of the components of the displacement vector for 
this node (1 – displacement along the axis X , 2 – displacement along the 
axisY , 3 – rotation about the axis ).Z  

In Figures 15.18 symbol  ie  is the number of the corresponding bar 
element. 

 
15.12. Stiffness Matrix of a Rectangular Finite Element 

for Calculating Thin Plates 
 
The displacements of the finit element must correspond to the de-

formed scheme of the system under study at its location. In the general 
case, it is usually impossible to accurately describe the state of a contin-
uum system through a finite set of nodal displacements using equations 
of type (15.18). Therefore, the FEM is classified as approximate. Never-
theless, it allows obtaining the calculation results of very high accuracy. 
Currently, FEM is the main method for solving the most diverse prob-
lems of statics, dynamics and stability of bars and continuum systems. 

The procedure for obtaining stiffness matrices of FE for calculating 
plates, shells, and other continuum systems is in many respects similar to 
the method for obtaining a bar stiffness matrix (see Section 15.11). Let 
us explain this note by the example of constructing the FE stiffness ma-
trix for plate calculation. 
 

Brief information from the theory of plate calculation 
 

A plate is a body whose thickness h  is small compared with the di-
mensions of the sides of the base a  and b  (Figure 15.19, a). 
The plane dividing the thickness of the plate in half is called the median. 
The intersection lines of the median plane with the lateral surface form 
the contour of the plate. According to the shape in plan, plates are distin-
guished rectangular, triangular, round, etc. 

When calculating the plates, the origin of the coordinate axes is locat-
ed in one of the points of the median plane. From the action of the trans-
verse load, the plate bends, the median plane turns into the median sur-
face. The displacements of the plate points in the direction of the axes x ,  
y , z  are denoted by u , v , w  respectively. 
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Figure 15.19 
 
In general, these displacements are functions of coordinates: 

 

 , ,u u x y z ,  , ,v v x y z ,  , ,w w x y z . 
 

Depending on the nature of the stress state of the plates, they are di-
vided into thick plates (the ratio of the thickness h   to the larger of the 
dimensions is greater than 0.10…0.20), thin plates (the corresponding 
ratio is in the range from 0.01 up to 0.10), very thin plates (the ratio less 
than 0.01). 

The “classical” theory of plates is applicable to very thin and moder-
ately thin plates. 

For the thick plates it becomes erroneous to view such structural ele-
ment as a plate – a description based on the three-dimensional theory of 
elasticity is required. 
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In turn, thin plates are divided into rigid thin plates (those for which 
tensile and shear forces in the middle surface are not taken into account 
during bending) and flexible thin plates (the shear and tensile stresses in 
the middle surface are taken into account during bending). 

The theory of calculating thin plates is constructed using the follow-
ing hypotheses. 

1. The direct normals hypothesis, according to which a rectilinear el-
ement normal to the median plane before deformation of the plate re-
mains normal to the median plane after deformation, and its length does 
not change. According with this hypothesis, the shear angles xz  and 

yz , as well as the linear deformation z  are taken equal to zero: 

 

0xz
u w

z x

  
      

;   0yz
v w

z y

  
      

;   0z  . 

 
2. The hypothesis of deformability of the middle layer, according to 

which the linear x , y  and angular xy  deformations of the middle 

layer are equal to zero: 
 

0

0

0x
z

u

x 

 
    

;        0

0

0;y
z

v

y 

 
    

 

0

0

0xy
z

u v

y x 

  
      

. 

 
3. The hypothesis of the absence of normal stresses on sites parallel 

to the middle layer, that is, stress 0z  . 

In accordance with the first two hypotheses, the displacements u  and  
v  of an arbitrary point (Figure 15.19, b) along the directions of the axes 
x and y are equal 

 
w

u z
x


 


,        

w
v z

y


 


. 
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As a result, linear and angular deformations are calculated by the 
formulas: 
 

2

2x
u w

z
x x

 
   

 
,        

2

2y
v w

z
y y

 
   

 
, 

 
2

2xy
u v w

z
y x x y

   
         

. 

 
Since 0z  , the generalized Hooke law, connecting stresses and 

strains, is written as: 
 

 21
x x y

E
   


,        21

y y x
E

   


, 

 

 2 1xy xy xy
E

G    


, 

 
where   is the Poisson ratio. 

The normal and tangential stresses caused by the bending of the plate 
linearly vary along the thickness of the plate and are calculated through 

the curvature 
2

2

w

x




, 
2

2

w

y




 and torsion 
2w

x y


 

 of the middle surface ac-

cording to the formulas: 
 

2 2

2 2 21
x

E z w w

x y

  
        

, 

 
2 2

2 2 21
y

E z w w

y x

  
        

,        
2

1xy
E z w

x y


  

  
. 

 
Bending moments xM  and yM  and torque xyM  per unit length  

of the plate section are calculated through the corresponding stresses. 
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Figure 15.19, c shows the distribution of forces along the faces of an el-
ementary prism dx dy h  . In order not to clutter the drawing, stresses, 

bending moments and torques are not shown on the faces 0x  and
0y  . On these faces, the increments of stresses are equal to zero 

 
15.13. Stiffness Matrix Formation Example 

of the Rectangular Plate Element 
 

In this example, the finite element of a rigid plate is used. 
1. Each node of the plate finite element has three degrees of freedom: 
w  – vertical displacement (deflection), 

w

y




 – angle of rotation about the axis x , 

w

x




 – angle of rotation about the axis y .  

In the directions of these displacements, we impose additional links 
and thus obtain the primary system of the displacement method (Figu- 
re 15.20). 

 

 
 

Figure 15.20 
 

It is necessary to form a matrix in the local coordinate system, which 
would make it possible to transform the vector of nodal displacements 
Z


 into vector of nodal reactions ZR


. 

We define the deflections function ( , )w x y  of the element in the form 
of a polynomial with 12 arbitrary constants. It must identically satisfy 
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the homogeneous (load acts in nodes) differential equation of the de-
formed plate surface: 

 
4 2 4

4 2 2 4
2 0

w w w

x x y y

  
  

   
. 

 
Let us assume that: 

 
2 2 3

1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

( , )

,

w x y a a x a y a x a x y a y a x

a x y a x y a y a x y a x y

      

    
  (15.43) 

 
where ia  – unknown independent parameters, which in the future must 

be expressed in terms of Z


. 

2. Angular displacements 
w

x




 and 
w

y




 are determined uniquely by 

the expression ( , )w x y . Then for any point of the element the displace-
ment vector can be determined by the dependence: 
 

u L a
 

,                                     (15.44) 
 

where                                   , ,
T

w w
u w

y x

  
    


; 

 
L  – coefficient matrix of dimension 3 by 12: 

 

L= 
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3  
  1  x 2y  x2 2xy 3y2 x3 3xy2 
 -1  -2x -y  -3x2 -2xy -y2  -3xy2 -y3 

 
3. The displacements vector u


 allows us to find the displacements of 

all element points , including nodal ones, having coordinates ( 0x  , 
0y  ), ( x a , 0y  ), ( x a , y b ), ( 0x  , y b ). Therefore, us-

ing the expression (15.44), we can establish the relationship between the 
vectors Z


 and a


: 
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Z H a
 

,                                     (15.46) 
 

where H  is the transformation matrix of dimension 12 by 12: 
 

H = 

1            
  1          
 -1           
1 a  a2   a3      
  1  a   a2   a3  
 -1  -2a   -3a2      
1 a b a2 ab b2 a3 a2b ab2 b3 a3b ab3 
  1  a 2b  a2 2ab 3b2 a3 3ab2 
 -1  -2a -b  -3a2 -2ab -b2  -3a2b -b3 
1  b   b2    b3   
  1   2b    3b2   
 -1   -b    -b2   -b3 

 
4. From (15.46) it follows that: 

 
1a H Z


.                                     (15.47) 
 

5. The displacements vector u
  using expressions (15.44) and (15.47) 

is represented in the form: 
 

1 .u L H Z


                                  (15.48) 
 

6. After determining the displacement vector, one can find the vector 

of generalized relative deformations k


, whose components are the cur-
vature and torsion of the middle surface of the plate: 

 
2 2 2

2 2
, , 2 Tw w w

k
x yx y

   
     


.                   (15.49) 

 
Performing the appropriate differentiation, we obtain: 

 
1k B a B H Z 

 
,                            (15.50) 
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where 
 

B= 

   2   6x 2y   6xy  

     2   2x 6y  6xy 

    2   4x 4y  6x2 6y2 
 

7. Linearly distributed (per unit length of the plate section) bending 
moments and torques for isotropic plates are calculated by the formulas: 

 
2 2

2 2x
w w

M D
x y

  
      

, 

2 2

2 2y
w w

M D
y x

  
      

,                        (15.51) 

 
2

1xy
w

M D
x y


  

 
, 

 
where D  denotes the value of linear bending stiffness of the plate, the 
so-called cylindrical stiffness: 

 

 
3

212 1

E h
D 


. 

 
Bending moments corresponding to positive curvatures are consid-

ered positive. 
In the matrix form of notation, the relationship of the vector of gener-

alized internal forces M


 with the vector of relative strains k


 takes the 
form: 

 

M C k


,                                      (15.52) 
 

where C  is the matrix of physical constants: 
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1 0

1 0

1
0 0

2

C D

 
 
 

  
 
 
 

. 

 
The expression of the vector of generalized internal forces M


 

through generalized displacements Z


 can be obtained by substituting 

expression k


 from (15.50) in the dependence (15.52): 
 

1M C B H Z
 

.                               (15.53) 
 

8. Variation of the potential energy density of the element defor-
mation 

 

 TA k M  
 

,                                (15.54) 

 
taking into account expressions (15.50) and (15.53), can be written as 
follows: 
 

   1 1TT TA Z H B C B H Z   
 

. 

 
For the entire volume of the finite element, the variation of the poten-

tial strain energy will have the form: 
 

   1 1TT T

V v

A Adv Z H B C B H Z dv      
 

       (15.55) 

 
or, since H  and Z


 are independent of the coordinates x  and y , 

 

   1 1TT T

v

A Z H B C B dv H Z  
    

 


 
.          (15.56) 
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9. Virtual work of nodal forces F  on changes (variations) of nodal 
displacements Z


 is: 

 

 TW Z F  
 

.                               (15.57) 

 
In accordance with the principle of virtual displacements ,A W    

therefore equalities (15.55) and (15.56) allow us to relate the vector of 
nodal forces F


 and the vector Z


: 

 

 1 1T T

v

F H B C B dv H Z  
  

 


 
.                  (15.58) 

 
10. The stiffness matrix (reaction matrix) of the finite element ER   

allows us to express the force vector F


 through the vector Z


: 
 

EF R Z
 

.                                    (15.59) 
 

Comparing expressions (15.58) and (15.59), we find the stiffness  
matrix of the finite element: 

 

 1 1T T
ER H B CBd H 



 
  

 
 . 

 
The matrix ER  (lower triangle) for the rectangular element of the 

plate is presented in table 15.2. 
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Table 15.2 
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Table 15.2 (сontinuation) 
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Table. 15.2 (ending) 
 

 
 

Note: For all elements of the matrix, the common factor 
30

D

ab
 is 

used, where D  is the cylindrical stiffness; 
a

b
  ; 

b

a
  . 
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15.14. General Notes on the Finite Element Method 
 

This chapter outlines only the basics of FEM. Additional information, 
details of finite element approximations of higher order and others, in-
cluding applied aspects of the method, can be found in the numerous 
educational and scientific sourses. 

In modern design and computing complexes (CAD softwares) de-
signed for numerical analysis of the stress-strain state, stability and vi-
brations of bars and continuum structural systems, as a rule, finite ele-
ment methode (FEM) is implemented. With the help of software based 
on FEM, a wide range of structures is analysed: flat and spatial bars sys-
tems, arbitrary plate and shell systems, frame-and-link structures of high-
rise buildings, slabs on a soil foundation, multilayer structures, mem-
branes, suspansion and cable stayed bridges, massive bodies. The analy-
sis is carried out on static and dynamic loads. 

The composition of CAD systems includes a large number of FE 
types: bars; quadrangular and triangular plate elements; shell FE (iso-
tropic and orthotropic material); elements for calculation multilayer shal-
low plates and shells, taking into account interlayer shifts and curvature; 
quadrangular and triangular plate elements on an elastic base; elements 
in the form of a tetrahedron, parallelepiped, general octahedron; special 
elements simulating links of finite stiffness, etc. A developed library of 
finite elements, effective methods and algorithms for solving equations 
systems of high order, and modern high-speed computers allow to solve  
problems with a large number of unknowns. 
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