Метод сокращения трафика в каналах передачи данных и увеличения загрузки узлов распределенной системы

Прихожий А.А., Труханович Т.Л. Белорусский национальный технический университет

Сокращение трафика в каналах передачи данных и сокращение загрузки узлов достигается оптимизацией назначения объектов и их репликаций на узлы по критерию минимума среднего времени обработки одного запроса к объекту.

Пусть $N=\{1,...,n\}$ — множество узлов, $M=\{1,...,m\}$ — множество объектов. Время обработки запроса к объекту j, поступившего с узла i и обрабатываемого узлом k, можно оценить с достаточной степенью точности выражением f_{ij} * $(r_{kj}+c_{ik}*send(l_j))$ * x_{kj} , где f_{ij} — число запросов к объекту j с узла i в течение времени наблюдения $Time_$, r_{kj} — время обработки на узле k запроса к объекту j, c_{ik} — временная задержка передачи единицы данных в канале (i,k), l_j — длина объекта j, $send(l_j)$ — часть длины объекта, пересылаемая в ответ на запрос, x_{kj} — переменная, принимающая значение l, если объект j размещается на узле k, и принимающая значение 0 в противном случае. Среднее время обработки запроса по всем узлам, всем объектам и всем запросам зависит в первую очередь от матрицы назначения X и может быть оценено выражением

$$T_{request}(D) = \frac{1}{\Sigma(F)} \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} * (r_{d(i,j),j} + c_{i,d(i,j)} * send(l_{j})),$$

где $d(i,j) \in N$ — узел, на котором обрабатывается запрос к объекту j, поступивший с узла i.

В задаче оптимизации целевая функция $\min_{D \in \Lambda} \{T_{request}(D)\}$ минимизирует время запроса по всем возможным размещениям объектов на узлах, где Λ – множество всех возможных корректных матриц D. Ограничениями являются ограничение на объем памяти, занимаемой объектами на одном узле, а также условие размещения каждого объекта хотя бы на одном узле.

Для решения задачи предложен алгоритм оптимизации, базирующийся на методе ветвей и границ. Разработана программа, минимизирующая среднее время запроса при варьировании всех основных входных параметров задачи оптимизации. Проведенные исследования показывают, что алгоритм сокращает трафик в каналах передачи данных и увеличивает загрузку узлов, обрабатывающих запросы к объектам. Он может быть использован при оптимальном проектировании распределенной системы.