 Эксплуа	тационные	показатели	работы	комбайновых	бригад	

No		Ед.	ПКС-8М,	«Урал-10А»	
n/n	Наименование показателя	изм.	подготовка	подгот.	очистн.
1.	Среднесугочный план	т	1021	1238	1616
2.	Среднесуточный факт	т	1200	1400	1800
3.	Среднегодовой план	тыс.т	122	200	
4.	Среднегодовая выработка	тыс.т	128	212	

Фактическая производительность даже в передовых бригадах в 2,5 раза ниже, а средние показатели ниже почти в четыре раза по сравнению с техническими возможностями машин. Причинами различия являются простои комбайнов в связи с цикличностью процесса доставки руды, большие затраты времени на отгоны и перегоны, работа комбайнов с низкой минутной производительностью при зарубке камер, расширении и подрубке с неполным использованием сечения рабочего органа. Эти резервы производительности могут быть реализованы за счет: перехода на большегрузные самоходные вагоны; разделения процессов отбойки и транспортировки руды и повышения ритмичности при применении технологии с магазинированием руды и челноковых схем выемки для рудников с устойчивыми вмещающими породами; предварительной зарубки камер при подготовке панелей; устройства участковых аккумулирующих бункеров; правильного выбора типа комбайна с целью соответствия его размеров размерам камер и мощности пласта для исключения работы с большой величиной наложения ходов, как при расширении, так и при подрубке камер.

Заключение. На отечественных и зарубежных рудниках накоплен значительный опыт эффективного использования комбайновых комплексов. Основными путями повышения эффективности комбайновой выемки являются: разработка и внедрение технологических схем с применением средств непрерывной доставки руды (поточная технология); модернизация исполнительных органов комбайнов и повышение эффективности фрезерования горной породы; создание и внедрение новых, более производительных машин; совершенствование организации труда.

УДК 629.331

Влияние физико-механических параметров торфяной залежи на загрузку пневматического колеса

Басалай Г.А.

Белорусский национальный технический университет

Эффективность эксплуатации колесных тракторов в агрегате с технологическими машинами на осушенном торфяном месторождении в значительной степени зависит от конструктивных параметров движителей и до-

пустимых нагрузок на опорное основание. Рабочая зона взаимодействия ппевматического колеса, оснащенного развитыми грунтозацепами, с деформируемым основанием может быть определена графически или на основе решения системы уравнений p = f(h); $p = f(P_z, S_z)$ где p - давление в иятне контакта, к Π а; h - деформация залежи, м; P_z -нормальная нагрузка ил колесо, кH; S_z – площадь пятна контакта, M^2 . Рабочая зона находится в области пересечения семейства кривых, характеризующих деформационные свойства залежи с несущей способностью p_0 с кривыми, отражающими изменение давления р в пятне контакта от текущего значения деформаини залежи h_i при определенной нормальной нагрузке P_z соответственно гладкого колеса или колеса с плотным рисунком протектора ($\gamma > 0.40$) и колеса с развитыми грунтозацепами при у ≤ 0.40 и при одинаковых наружных параметрах D и В. Экспериментальными исследованиями по вдавливанию различных штампов установлено, что на величину несущей способности залежи p_0 определяющее влияние оказывают их размеры и конфигурация. Однако, если влияние относительного показателя П/S, т.е. периметра Π к площади S штампа, учтено в формуле C.C. Корчунова, то рекомендации по влиянию S на p_0 в абсолютном выражении весьма относительны. Например, рекомендуемые допускаемые давления для гусеничното хода торфяных машин, как отмечается в работах Ф.А. Опейко, для копесных движителей следует принимать в 2-3 раза больше, т. к. площадь опорной поверхности у последних значительно меньше.

В данной работе изучены распределение напряжений на глубине торфяного массива в зависимости от физико-механических свойств залежи, от формы и размеров пятна контакта, а также от степени загрузки штампа, т.е. от давления, создаваемого этими штампами на поверхности, для правильного выбора допускаемого давления движителя на залежь и последующего определения тягово-сцепных свойств колесных тракторов на осущенной торфяной залежи. Для этого использованы данные из физики горфа по распределению влажности торфа по глубине залежи и связанными с ней предельными напряжениями сжатия σ_{θ} и сдвига t_{θ} торфяную залежь рассматривается в виде трехслойного массива, расположенного на плотной грунтовом основании. Разделение слоев принимается по границе с явным переходом торфа от упруго-пластичного состояния к его состоянию с преобладанием вязкотекучих свойств, которое, в основном, определяется влагосодержанием и в первом приближении совпадает с показатенем нормы осущения или глубиной залегания грунтовых вод. На поверхпости торфяной залежи выделяется еще один слой с резко переменными физико-механическими свойствами, который образуется при интенсивном воздействии метеорологических и технологических факторов.