простоя основного оборудования. Анализ повреждаемости элементов цилиндров высокого и среднего давления показывает, что наибольшее внимание следует уделять вопросам повышения надежности рабочих лопаток и дисков, эксплуатирующихся в ЗФП, а также способам усиления защиты рабочих лопаток от эрозийного износа.

Для надежной эксплуатации проточной части паровой турбины и лопаточного аппарата в частности, необходим комплексный подход с учетом всех влияющих на работу лопаток факторов.

Изучение условий работы и возможных повреждений лопаток паровых турбин цилиндров высокого и среднего давлений необходимо для осуществления их грамотной эксплуатации, монтажа и ремонта, а так же разработки эффективных методик, которые способствуют улучшению качества их работы, увеличению надежности, прочности и износостойкости, продлению срока службы.

УДК 621.438+621.311

Применение электрокотлов на ТЭЦ для регулирования графиков электрической нагрузки

Качан С.А., Барановский И.Н., Апанасевич В.Е. Белорусский национальный технический университет

В условиях ввода в Белорусской энергосистеме АЭС, когда для действующих электростанций значительно сократится зона базовой электрической нагрузки, ТЭЦ в большой степени будут вовлечены в регулирование суточных графиков нагрузок, включая всю переменную их часть.

Применение электрокотлов на ТЭЦ обеспечит эффективное использование теплофикационных турбоустановок в маневренном режиме, поскольку при использовании электроэнергии для нагрева сетевой воды, достигается максимальное снижение выдачи мощности в энергосистему Δ Pper в ночные часы (вплоть до нуля). При этом фактическое снижение мощности установок ниже теплового графика $\Delta N_{\tau \phi}$ меньше ΔP_{per} на величину потребления электроэнергии электрокотлами ΔN_{sk} .

Необходимая мощность электрокотлов Δ Nэк, будет тем выше, чем больше задаваемая энергосистемой глубина разгрузки Δ Pper и чем ниже удельная выработка электроэнергии на тепловом потреблении Wтф на разгружаемой теплофикационной турбоустановки.

Поскольку $W_{\tau \varphi}$ паротурбинных установок (ПТУ) примерно в 2 раза ниже, чем парогазовых установок (ПГУ) утилизационного типа, для одинакового снижения выдачи электроэнергии Δ Pper требуется снижение на-

грузки отопительных отборов и, соответственно, мощность электрокотлов для ПТУ почти в 2 раза большая, чем для ПГУ.

Доля ΔN_{3k} от ΔP рег составляет ~1/3 для ПГУ и ~2/3 – для ПТУ.

Поэтому фактическая глубина разгрузки установок, работающих по тепловому графику, по электрической мощности $\Delta N_{\tau \varphi}$, наоборот, составляет $1/3\Delta P_{per}$ для ПТУ и ~2/3 ΔP_{per} – для ПТУ.

В сравнении с разгрузкой отопительных отборов на топливоиспользующие котлы применение электрокотлов на ТЭЦ приводит к некоторому (менее 0,5%) перерасходу топлива, поскольку работа электрокотлов связана с «двойной» трансформацией энергии и сопровождается дополнительными ее потерями.

Наибольшая величина перерасхода топлива соответствует применению инектрокотлов на ПГУ в связи с более глубокой их разгрузкой ($\Delta N_{\tau\phi} \sim 2/3$ ΔP_{per}) и более резким снижением их экономичности при разгрузке.

Тем не менее, этот перерасход топлива может рассматриваться как приемлемая плата за повышение маневренности.

УДК 621.1

Перспективы использования ветроэнергетики

Качан С.А., Лущик И.М. Белорусский национальный технический университет

Дефицит собственных ископаемых топливных ресурсов и необходимость повышения энергетической безопасности Беларуси требуют изменения подходов к обеспечению республики топливно-энергетическими ресурсами. Ветроэнергетика представляет экологически безопасный и эффективный, достаточно мощный и доступный источник энергии.

Беларусь располагает значительными ресурсами энергии ветра, которые оцениваются в 1600 МВт годовой выработкой электроэнергии 2,4 мпрд. кВт-ч. На территории нашей страны выявлено около 1840 площадок, пригодных для размещения ветроэнергетических установок (ВЭУ) и ветропарков. Наиболее перспективными районами для развития ветроэнергетики являются северо-восточные и центральные районы.

Внедрению ВЭУ должно предшествовать детальное обследование меспа стреительства. Обследования зон опытной эксплуатации ВЭУ в Беларуси показали, что при оптимальном выборе площадки (на возвышениях и шкрытой местности, на берегах водных массивов и т.п.) окупаемость ВЭУ при среднегодовой скорости ветра 6-8 м/с укладывается в срок около 5 лет. К неоправданному увеличению сроков окупаемости ветротехники ведут опибки в определении ее эксплуатационных параметров.