Основным материалом для изготовления корпуса и внутренних деталей конструкции является отожжённый титан, обеспечивающий эксплуатацию в заданных условиях. Для обеспечения герметизации корпуса при давлении не более 160 технических атмосфер и температуры до + 400 °C прокладки уплотнения выполнены из листа свинцового марки С1. При помощи расчётов определено требуемое усилие сжатия уплотнительного элемента и подтверждена правильность выбора посадки сопрягаемых элементов клапана.

Твердотельная модель клапана (рис.) и рабочие чертежи деталей были разработаны при помощи CAПР SolidWorks.

В результате выполненной работы требования технического задания выполнены полностью.

УДК 621

АДРЕСНЫЙ ПАССИВНЫЙ ОБЪЕМНЫЙ ИНФРАКРАСНЫЙ ИЗВЕЩАТЕЛЬ

Студент гр. 11301118 Баранов К.Д. Ст. преподаватель Исаев А.В. Белорусский национальный технический университет

Для обработки сигналов, поступающих по двум каналам с чувствительного элемента извещателя — счетверенного пироэлемента, используются полосовые усилители и два сдвоенных компаратора. В качестве антимаскировочной защиты применяются ИК-светодиод и фототранзистор, функциональная схема устройства приведена на рисунке 1а).

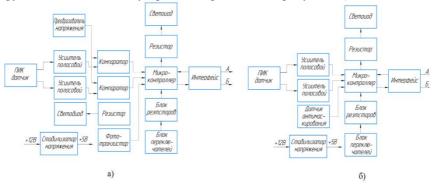


Рис. 1 . Электрические функциональные схемы устройств

Использование современной микроконтроллерной техники и цифровых устройств позволяет улучшить рассматриваемый извещатель. Аналого-цифровой преобразователь (АЦП) в микроконтроллере своим функци-

оналом заменяет четыре аналоговых компаратора и в этом случае также отпадает необходимость использования микросхемы преобразователя напряжения. Для этого два канала с сигналом, поступающим с пироэлемента, подключаются к каналам встроенного АЦП микроконтроллера, настроенных на параллельную работу. Кроме того, существуют датчики отслеживания загрязнения оптической системы, которые позволяют заменить собой ИК-светодиод и фототранзистор. Улучшенная функциональная схема устройства приведена на рисунке 1б).

Перечисленные изменения повышают надежность работы устройства, повышают его быстроту работы и уменьшают габариты печатной платы.

УДК 624.012.45

ИЗМЕРЕНИЕ ДЕФОРМАЦИЙ ПРИ ИСПЫТАНИЯХ МНОГОПУСТОТНЫХ ПЛИТ ПЕРЕКРЫТИЯ

Студенты гр. ПГС-456 Величко Д.В., Сивак В.И. Кандидат техн. наук, доцент Корнеева И.Б. Одесская государственная академия строительства и архитектуры

Для определения деформаций и перемещений использовались следующие устройства: тензорезисторы 1, 2, 3 и 4 на верхней плоскости плиты (рис. 1), 5 и 6 на боковой поверхности в сжатой зоне и 7 на боковой поверхности у нижней грани; индикаторы 1 и 9 на боковой поверхности плиты в растянутой зоне, 2 и 8 тоже на боковой поверхности, но в сжатой зоне, 3, 4, 5, 6 и 7 на верхней плоскости плиты, прогибомеры посредине пролета с каждой стороны.

Рис. 1. Тензорезисторы и плата

Для снятия показаний с тензорезисторов была изготовлена специальная плата, с помощью которой измеряется электрическое сопротивление, что превращается в цифровой код, который передается на внешний компьютер по последовательному интерфейсу СОМ (высокоскоростной режим).