С помощью формул (7) легко получить бихарактеристики, которые позволяют построить характеристические поверхности и являются составляющими групповой скорости распространения упругой волны [2, 3].

Таблица 1. Значения углов q и $\, heta^* \,$ для некоторых кубически анизотропных тел

	Упругие постоянные, 10 ¹⁰ , Н/м ²			Плотность,	Угол Ө	Угол
Материал	Aı	A ₂	A ₄	г, кг/м ³		θ*
германий	12.89	4.83	6.71	5460	17028	20 [°] 40'
золото	18.6	15.7	4.20	19300	32°07'	31°30'
никель	24.65	14.73	12.47	8750	29°36'	28 ⁰ 38'
серебро	12.40	9.34	4.61	10505	32 ⁰ 27'	31 ⁰ 11'
медь	16.84	12.14	7.54	8930	33°07'	31°19'
свинец	4.66	3.92	1.44	11342	35 ⁰ 03'	33 ⁰ 26'

Литература

- 1. Дьелесан Э., Руайе Д. Упругие волны в твердых телах. М., 1982.
- 2. Петрашень Г. И. Распространение волн в упругих анизотропных средах. Л., 1980.
 - 3. Смирнов В. И. Курс высшей математики, т. IV, ч. 2. М., 1981.
- 4. О. Н. Скляр, С. М. Босяков // Материалы, технологии, инструменты, 2000, т. 5, № 4, С.26-28.
- Современная кристаллография. Физические свойства кристаллов. Т. IV. М., 1984.

УДК 546.621:621.785

ИЗМЕНЕНИЕ СТРУКТУРЫ И ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВОВ АЛЮМИНИЯ С НИКЕЛЕМ И МАРГАНЦЕМ

Е. Ю. Василевич, В. Г. Шепелевич

В последние десятилетия активно ведутся исследования алюминиевых сплавов, полученных сверхбыстрой закалкой из жидкой фазы при скоростях охлаждения 105 К/с и выше. При этом особый интерес представляют сплавы алюминия с переходными элементами [1], что обусловлено их низкой взаим-

ной растворимостью в твердом состоянии при комнатной температуре, а также способностью образовывать интерметаллические соединения. Но сплавы, полученные сверхбыстрой закалкой из жидкой фазы, находятся в неравновесном состоянии из-за образования микрокристаллической структуры, пересыщенного твердого раствора, метастабильных фаз. В связи с этим исследование стабильности быстрозатвердевших сплавов, содержащих никель и марганец, является актуальным.

Быстрозатвердевшие фольги сплавов AL-Mn и Al-Ni получены при затвердевании капли расплава (\sim 0,2 г), инжектированной на полированную поверхность вращающегося медного цилиндра диаметром 20 см. Линейная скорость движения поверхности цилиндра 14 м/с. Толщина фольг находится в переделах 10...100 мкм. Скорость охлаждения расплава, как показал расчет[2], порядка 10^6 K/с. Рентгеноструктурный анализ применялся для исследования текстуры, определения фазового состава, физического уширения β дифракционной линии 420, параметра α элементарной ячейки твердого раствора на основе алюминия. Полюсные плотности дифракционных линий 111, 200, 220, 311, 331 и 420 рассчитывали по методу Харриса [3]. Микротвердость фольг H_{α} измеряли на приборе ПМТ-3 с использованием нагрузки 20 г. Изохронный отжиг быстрозатвердевших фольг проводили от комнатной температуры до 600° С через \sim 30° С с выдержкой по 20 мин при каждой температуре.

Ренттеноструктурные исследования показали, что быстрозатвердевшие сплавы системы алюминий-марганец являются пересыщенными твердыми растворами на основе алюминия. Быстрозатвердевшие фольги сплавов системы алюминий-никель, кроме пересыщенного твердого раствора на основе алюминия, содержат выделения интерметаллической фазы Al₃Ni. Зеренная структура является микрокристаллической. Также наблюдается текстура (111), а не текстура (100), которая характерна для алюминия и его сплавав и получаемых при условиях кристаллизации, близких к равновесным [3]. Таким образом, фольги сплавов системы алюминий-марганец и алюминий-никель, полученные сверхбыстрой закалкой из жидкой фазы, находятся в неравновесном состоянии.

Быстрозатвердевшие фольги подвергали изохронному и изотермическому отжигам. На рис. представлены графики изменения микротвердости фольг сплава Al-2 ат.% Мп и Al-0,6 ат.% Ni. При повышении температуры отжига микротвердость фольг сплава Al-0,6 ат.% Ni интенсивно изменяется в пределах 100...180° С, 260...380° С и 420...540° С. На первых двух этапах происходит уменьшение параметра элементарной ячейки твердого раствора, что указывает на уменьшение в нем концентрации никеля. Физическое уширение дифракционной линии 420 уменьшается при отжиге 180° С и 480° С, но увеличивается при отжиге 340° С. Отжиг при температурах 180...340° С не вызывает существенно-

го перераспределения полюсных плотностей дифракционных линий твердого раствора на основе алюминия. Но отжиг при 480° С вызывает ослабление интенсивности одних и усиление других дифракционных линий твердого раствора на основе алюминия и фазы Al₃Ni. Изменения в структуре и микротвердости на первом этапе обусловлены незначительным развитием диффузионных процессов, приводящих к миграции никеля к межзеренным границам. В интервале 260...380° С диффузионные процессы проходят активно, что приводит к образованию мелкодисперсных частиц Al₃Ni при распаде пересыщенного твердого раствора, которые создают в матрице микронапряжения, обусловливающие физическое уширение дифракционных линий. Дальнейший отжиг при 480° С способствует коалесценции частиц второй фазы, что позволяет протекать рекристаллизационным процессам [4], уменьшающих физическое уширение дифракционных линий и вызывающих изменения полюсных плотностей дифракционных линий.

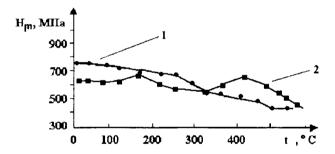


Рис. Изменение $H_{_{\rm M}}$ при изохронном отжиге быстрозатвердевших фольг сплава Al-0,6 am.% Ni (1) и Al-2 am.% Mn (2).

Изменение микротвердости быстрозатвердевших фольг сплава A1-2 ат.% Мп происходит более сложно. На графике зависимость Н от температуры отжига наблюдается два экстремума при 180° С и 420° С. Установлено, что отжиг выше 300° С вызывает появление новых дополнительных дифракционных линий, принадлежащих стабильной фазе A1 мп, обуславливает уменьшение концентрации марганца в твердом растворе на основе алюминия и увеличение физического уширения дифракционной линии 420. Увеличение физического уширения дифракционной линии при отжиге в интервале 300...400° С вызвано возникновением микронапряжений, обуславливающих повышение микротвердости. Отжиг при 400° С приводит к огрублению структуры, что

уменьшает β и H_{μ} . Изменение микротвердости и физического уширения дифракционных линий и параметра элементарной ячейки при изохронном отжиге в интервале $100...300^{\circ}$ С целесообразно связать с появлением метастабильных квазикристаллических фаз, выделение которых предшествует появлению стабильной фазы Al_{κ} при изотермическом отжиге [4].

Литература

- 1. Мондольфо Л. Ф. Структура и свойства алюминиевых сплавов.— М.: Металлургия, 1979. 640 с.
- 2. . Мирошниченко И. С. Закалка из жидкого состояния. М.: Металлургия, 1982. 168 с.
- 3. Вассерман Г., Гревен И. Текстуры металлических материалов. М.: Металлургия, 1969.— 654 с.
- 4. Колачев Б.А., Габидулин Р. М., Пигузов Ю. В. Технология термической обработки цветных металлов и сплавов. М.: Металлургия, 1980.—280 с.

УДК 621.384.2

КОНТУРНЫЙ ДЕТЕКТОР НА ОСНОВЕ КООРДИНАТНО-ЧУВСТВИТЕЛЬНОГО ФОТОПРИЕМНИКА. ПРИНЦИПЫ ПРЕОБРАЗОВАНИЯ И ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ

Д. В. Лисовский, Л.И. Шадурская, В. Б. Яржембицкий

Автоматизация производственных процессов в настоящее время немыслима без систем технического зрения (СТЗ). Совершенствуется как элементная база СТЗ (в частности, видеодатчики), так и принципы обработки и распознавания визуальной информации. В круг задач СТЗ входят: распознавание объектов (деталей, заготовок и др.) простейших типов [1], определение их координат, размеров, угла ориентации, что характерно для процессов сортировки и манипулирования объектами. Такие задачи могут быть эффективно решены на основании анализа теневых изображений этих объектов. Контроль теневых изображений упрощается с применением анализатора [2], функцией которого является выделение линии контура изображения объекта (контурного детектора).

В литературе подробно описан координатно-чувствительный фотоприемник (КЧФ) на основе продольного фотоэффекта [3], особенности функционирования которого позволяют использовать его в качестве основы для построения контурного детектора с применением линейного или радиального щелевого сканирования.