Динамическое взаимодействие опорного катка с металлической гуссинией

Плиц В.Н.

Белорусский национальный технический университет

Известна матемагическая модель для определения динамической составляющей нагрузки $F_{\rm gd}$ в контакте опорного катка с металлической гусеницей при движении машины со скоростью v [1]. Однако в модели при определении $F_{\rm gd}$ не учитывается подрессоренная масса $M_{\rm p}$. приходящаяся на опорный каток. В связи с этим, предложена модель для определения $F_{\rm gd}$ с учетом $M_{\rm p}$. Передаточная функция $W_{F_{\rm gd}}(s)$. представленная как отношение $F_{\rm gd}$ и величины разности уровней деталей, составляющих беговую дорожку $h_{\rm n}$ в пределах шага гусеницы $l_{\rm o}$, приняла вид

$$W_{F_{\text{gat}}}(s) = (k_{\text{sk}}s + c_{\text{sk}}) \left(1 - \frac{(M_{\phi}s^2 + k_{\text{p}}s + c_{\text{p}})(k_{\text{sk}}s + c_{\text{sk}})}{(M_{\phi}s^2 + k_{\text{p}}s + c_{\text{p}})(ms^2 + (k_{\text{sk}}s + c_{\text{sk}})s + c_{\text{p}} + c_{\text{sk}}) - (k_{\phi}s + c_{\phi})^2} \right). \tag{1}$$

где m — масса опорного катка и неподрессоренных частей подвески; $c_{\rm p}$ — жесткость подвески; $c_{\rm ok}$ — жесткость опорного катка: $k_{\rm p}$ — коэффициент демпфирования опорного катка.

Используя (1), для эксплуатационного диапазона скоростей трактора «Беларус 2102» установлена зависимость $F_{\rm gd}(v)$ (I_0 =158 мм; h_0 =1,55 мм; M_0 =1038 кг; m=87 кг) (рисунок 1).

 $1 - F_{gst}$ (статическая составляющая нагрузки); $2 - F_{gd}$

Рисунок 1 — Влияние скорости движения трактора v на изменение $F_{\rm gal}$ и $F_{\rm gd}$

Установлено, что при скорости $v=23\,\mathrm{km/4}$ F_{gd} достигает наибольшей величины $F_{\mathrm{gd}}=13.6\,\mathrm{kH}$ и превышает F_{gst} в 1,23 раза. Литература

1. Платонов, В.Ф. Динамика и надежность гусеничного движителя / В.Ф. Платонов. – М.: Машиностроение, 1973. – 232 с.