
Условия получения и кристаллическая структура СВЧ керамики ВаАl₂Si₂O₈

Акимов А.И.², Савчук Г.К.¹, Петроченко Т.П.²
¹ Белорусский национальный технический университет
²ГНПО НПЦ НАН Беларуси по материаловедению. Минск

Соединение $BaAl_2Si_2O_8$ имеет высокую температуру плавления и низкий температурный коэффициент линейного расширения, что предопределяет высокую стойкость к термическим ударам СВЧ керамических материалов, полученных на его основе.

Целью данной работы являлось изучение условий получения СВЧ

BaAl ₂ Si ₂ O ₈	Координаты атомов и С		Межатомные расстояния, А		
Ba ⁺² (0, 0,0)	U	0.02265	Al-Sı	3.08358	
AΓ'(1/3,2/3, z)	<u>.</u>	0.3114	Ba-Al	3.90507	
	U	0.03681	Ba-Si	3.68252	
$Si^{-4}(1/3,2/3,z)$	z	0 7370	Al-OI	1.67409	
	U	0.0343	Al-O2	1.72200	
$O^{2}(1)(1/3,2/3,z)$	z	0.5263	Si-O1	1.64114	
	U	0.1153	Si-O2	1.62134	
$O^{-2}(2) (x, y, z)$	z	0.1172	Ba-O2	3.48188	
x=0.005 $y=0.428$	U	0.0079	Ba-O2	2.82084	
Пространствен- ная группа Р -3		Парамегры ячейки α=β=90°. γ=120°, a=b=5.300 c=7.788			

керамики на основе BaAl₂Si₂O₈ и определение параметров се кристаллической структуры.

Проведенные исследования показали, что керамика состава $BaAl_2Si_2O_8$ является однофазной, если $T_{\text{синтеля}} = 1450$ °C, а $T_{\text{обжига}} = 1500$ °C (см. рис.).

Для гексагональных керамик состава $BaAl_2Si_2O_8$ определена пространственная группа, вычислены параметры элементарной кристаллической ячейки, основные межатомные расстояния, координаты атомов и их среднеквадратичные смещения U относительно положений равновесия (Λ^2) (см. табл.).

С помощью ДТА анализа и температурных измерений относительной диэлектрической проницаемости установлена для образцов гексагональной цельзиановой керамики

температура структурного перехода α-гексагональной модификации в β-гексагональную модификацию.

Данная работа выполнена в рамках ГНИП "Молекулярные и кристаллические структуры".