Таблица 1. Энергопотребление по отраслям

Category	percentage
Residential	32%
Industrial	10%
Agriculture	14%
Commercial	14%
General Services	17%
Street Lighting	13%

При этом необходимо отметить, что ряд удаленных районов страны нуждается в автономном электрообеспечении.

Ливия имеет громадный потенциал солнечной и ветровой энергии, однако их особенности таковы, что ни

один из названных источников не способен обеспечить ЭЭ в любое время суток и года. Кроме того, в определенное время суток можно легко прогнозировать избыток производимой энергии — в дневное время и при наличии ветра. Это приводит к необходимости установки накопителей ЭЭ.

Известно несколько методов управления ВЭУ:

- 1. Контроллер на основе измерения скорости ветра регулирует скорость турбины для поддержания оптимального значения выходной мощности.
- 2. Контроллер, функционирующий в замкнутой системе на основе измерение сигнала выходной мощности. Значение скорости турбины используется для выбора соответствующей кривой мощности, которая должна быть отслежена системой.
- 3. Контроллер, реализующий поисковый пошаговый алгоритм. Он основан на введении возмущений и измерении реакции на них.

УДК 620.91

Исследование характеристик солнечных батарей

Трещ Абдунасер Мохамед Белорусский национальный технический университет

Интенсивность солнечной энергии, падающей на поверхность, зависит от ориентации этой поверхности по отношению к Солнцу и может быть определена расчетом для данного времени года (дня). При этом учитываются следующие факторы: ориентация поверхности относительно Солнца; состояние атмосферы; тень от деревьев, соседних зданий и др.; отражение солнечных лучей от снега, льда, облаков. С этой точки зрения условия Ливии весьма благоприятны для солнечной энергетики. Проблемы использования электроэнергии солнечных батарей чрезвычайно многообразны. Здесь можно выделить следующие аспекты:

- физические проблемы преобразования солнечной энергии в электрическую;

- преобразование полученной электрической энергии солнечных батарей к параметрам, удовлетворяющим потребителя в смысле количества и качества:
 - обеспечение непрерывного электропитания.

Сразу оговоримся: преобразование солнечной энергии в тепловую здесь не рассматривается.

Генерирующие свойства фотоэлементов (Φ Э) определяются их характеристиками, из которых с точки зрения потребителя наиболее важной является вольтамперная характеристика (BAX), представленная уравнением [1]

$$I_{\text{Happ}} = I_{\phi} - I_0 \left[\exp\left(\frac{qU}{AKT}\right) - 1 \right], \tag{1}$$

где I_{ϕ} , I_{∂} , I_{naep} -токи: генерируемый фотоэлементом (I_{ϕ}), через шунтирующий диод (I_{∂}), нагрузки (I_{naep}), U напряжение на нагрузке.

ВАХ ФЭ (1) трудно использовать на практике, т.к. изготовители солнечных батарей (СБ), как правило, не приводят значения коэффициентов в (1), а также при переменной интенсивности солнечного излучения.

УДК 629.7

Днагностика угольного регулятора по параметрам напряжения сети постоянного тока

Шейников А.А., Белегов А.Н. Военная академия Республики Беларусь

Наиболее рациональным решением задач эффективной эксплуатации систем электроснабжения (СЭС), с учетом современных тенденций развития авиационного оборудования, является применение бортовых автоматических систем контроля, выполненных на базе ЦВМ. В этих условиях особая роль отводится разработке и внедрению методов технического состояния. позволяющих функциональную диагностику агрегатов СЭС. В качестве основы методов предлагается анализ параметров генерируемой электрической энергии. Исследования показали, что этот подход применим, в том числе и при диагностике угольных регуляторов напряжения. Ухудшение технического состояния системы стабилизации напряжения влечет за собой изменение ее динамических свойств. Уравнение системы стабилизации напряжения представим в виде