Зависимость плотности керамики на основе нитрида кремния после азотирования от размера частиц порошка

¹Голубцова Е.С., ²Каледина Н.Б., ¹Нисс В.С. ¹Белорусский национальный технический университет ²Белорусский государственный технологический университет

Одним из наиболее технологичных и распространенных методов изготовления керамических деталей является реакционное спекание, заключающееся в азотировании спрессованных заготовок, при котором совмещаются процессы образования нитрида кремния и его спекания. Так как характер азотирования порошков кремния и спрессованных изделий практически одинаков, то все требования к исходным компонентам (химический состав и дисперсность порошка кремния, примеси в азоте), каталитическим или активирующим добавкам, в равной мере относятся и к процессу реакционного спекания. Исследовали зависимость плотности керамики (y_2) от размера частиц порошка (y_1). Азотирование проводилось при температуре 1390 °C в атмосфере $N_2 + 5\% H_2$.

Полученные данные представлены в таблице.

	Размер частиц порошка, мкм	Состав смеси	Плотность, г/см
1	0, 433	5%Y ₂ O ₃ -1,5%MgO - Si	2,2854
12	0,473	5%MgO – Si	2,1501
3	0,675	10%MgO - Si	2,1278
А	0,912	7%MgO-Si	2,1340
5	0,938	10%Y ₂ O-3%MgO-Si	2,1977
6	1,084	5%Y ₂ O ₃ -1,5%MgO-Si	2,0304

Связь между размером частиц и плотностью можно выразить уравнением

$$y_2 = \gamma$$
, г/см³ = 2,319 – 0,216 y_1 , где y_1 - размер частиц, мкм.

Эго уравнение адекватно ($F_p=11,3 < F_{\kappa p}=11,39$ при $\alpha=0,01$; $f_1=4$ и $f_2=5$ при ошибке воспроизводимости $S_2=0,0211$ (6% от средней величины плотности $\overline{y}_2=2,1542$ г/см³. Анализ уравнения (1) показывает, что с ростом размера частиц порошка (y_1) плотность керамики после азотирования уменьшается (с 2,2854 до 2,0304 г/см³).