УДК 626.17

Определение параметров изготовления геотекстильного волокнистопористого материала методом математического планирования

Шаталов И.М., Карпова Н.С., Комар Е.В. Белорусский национальный технический университет

Нетканые волокнистые геотекстильные материалы состоят из элементарных волокон полимера, хаотично расположенных и пространстве и спаянных в местах контакта между собой.

Серией опытов установлено, формирование что пневмоэкструзионному происходит В условиях методу возмущений потока. Об этом свидетельствует анализ фотографий полимера. получения вытягиваемой Для количественных струи процесс образования определяющих волокон. рассмотрены и проанализированы уравнения состояния элементарного отрезка волокна.

Безразмерные критерии были установлены путем анализа размерностей величин формирования материала определяющих граничные и начальных условия процесса формирования. К этим величинам относятся: $\rho_{\rm r}$ плотность газа (кг/м³); $v_{\rm r}$ — скорость газа (м/с); σ_0 — поверхностнос натяжение (н/м); λ — продольная трутоновская вязкость (Па·с); E — модуль упругости расплава (Па); $\rho_{\rm p}$ — плотность расплава (кг/м³); d_0 —диаметр сопла распылителя (м); $Q_{\rm p}$ — объемный расход расплава (кг/м³); $T_{\rm p}$ температура расплава на выходе из сопла (К); $T_{\rm r}$ — температура газа (К); $Q_{\rm r}$ — объемный расход газа (м³/с); α — коэффициент теплопередачи (Вт/м²-К); $C_{\rm p}$ — удельная теплоемкость расплава (Дж/м·К); $\lambda_{\rm p}$ — теплопроводность расплава (Вт/м·К); L — расстояние до формообразователя (м); $T_{\rm p}$ температура формообразователя (К); $\sigma_{\rm p}$ — прочность расплава при растяжении (Па); $v_{\rm p}$ — скорость перемещения формообразователя (м/с); g ускорение силы тяжести (м/с²). Таких величин набралось 19.

Согласно П-теоремы специфика процесса формирования нетканого термоскрепленного материала отражают следующие комплексы:

$$K_1 = \lambda_p \rho_p^2 d_0^2 T_p \lambda^{-1}$$
$$K_2 = \lambda^2 \left(\sigma_p \rho_p d_0^2 \right)^{-1}$$

Комплекс K_1 устанавливает взаимосвязь между тепловыми процессами и процессом вязкого деформирования волокна. Второй комплекс K_2 содержит вязкость расплава λ и прочность расплава при растяжении. Полученные два комплексных параметра K_1 и K_2 позволяют установить связь параметров структуры полученного материала с конструктивными технологическими параметрами (факторами) его изготовления.