УДК 624.072

Несущая способность болтов, подверженных срезу или растяжению по СНиП II-23-81* и ТКП EN 1993-1-8

Тишенко А.А.

Белорусский национальный технический университет

СНиП II-23-81*

Несущая способность болтов

на срез:

$$N_b = R_{bs} \gamma_b A n_s ;$$

- на смятие:

$$N_b = R_{bp} \gamma_b d \sum t \; ;$$

на растяжение:

$$N_{h} = R_{hr} A_{hn} ,$$

где R_{hs} , R_{hs} , R_{h} — расчетные сопротивления болговых соединений;

d-наружный диаметр стержня болга;

 A_{bi} – плошаль сечения болта нетто;

 А – расчетная площадь сечения стержня болга;

Д – наименьшая суммарная толщина элементов, сминаемых в одном направлента.

n_s — число расчетных срезов одного болга:

γ_b – коэффициент условий работы соединения:

 $\gamma_b = 1,0$ — соединения класса точности **A**:

 $y_b = 0.95$ — соединения класса точности В и С.

TKΠ EN 1993-1-8

Несущая способность болтов на срез:

$$F_{v,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}},$$

где $\gamma_{M2} = 1.25$;

коэффициента;

а) если плоскость среза проходит через резьбовую часть болта ($A = A_x$, где A_x площадь сечения болта нетто) $\alpha_x = 0.5$; 0.6 -зависит от класса прочности;

6) если плоскость среза болта проходит через гладкую часть болта (A – поперечное сечение брутто) α ,=0,6.

Несущая способность на смятие

$$F_{b,Rd} = \frac{k_1 \alpha_b f_u dt}{\gamma_{M2}} \; ;$$

где α_b — наименьшее из α_b и 1,0; а) вдоль усилия

для крайних болтов $\alpha_d = \frac{e_1}{3d_0}$;

для средних болгов $\alpha_d = \frac{p_1}{3d_0} - \frac{1}{4}$;

б) поперек усилия k_1 — наименьшее из: для крайних болтов 2,8 $\frac{e_2}{d}$ -1,7 и 2,5;

для средних болтов 1,4 $\frac{p_2}{d_0}$ -1,7 и 2,5;

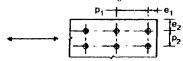


Рисунок. 1. К определению k_1

Несущая способность на растяжение:

$$F_{I,Rd} = \frac{k_2 f_{ub} A_s}{\gamma_{M2}}$$

где k2 = 0.63 - для болга с потайной головкой; <math>k2 = 0.9 - в остальных случаях