(51)5 B 60 P 1/64

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (FOCHATEHT CCCP)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

- (21) 4845583/11
- (22) 02.07.90
- (46) 23.01.93.Бюл.№ 3
- (71) Белорусский политехнический институт
- (72) М.С.Теленченко и В.В.Теленченко
- (56) Патент США № 3752345, кл. В 60 Р 1/52, кл. 414-498, 1973.
- (54) ТРАНСПОРТНОЕ СРЕДСТВО СО СЪЕМНЫМ КУЗОВОМ
- (57) Использование: на специализирован-· ном подвижном составе при перевозках гру-

зов в съемных кузовах. Сущность изобретения: транспортное средство содержит подвижную раму 2, имеющую в продольном направлении клиновидную форму. На задней части подвижной рамы смонтирован убираемый упор 6 для взаимодействия с передней частью снятого кузова при установке подвижной рамы в транспортное положение во время движения транспортного средства задним ходом. 1 п.ф-лы, 8 ил.

Изобретение относится к специализированному подвижному составу автомобильного транспорта и может найти применение при перевозках грузов в съемных кузовах.

Известно транспортное средство со съемным кузовом, содержащее раму шасси, имеющую продольные наклонные направляющие с уклоном вниз в сторону выгрузки и подвижную раму (1).

Недостатком известного транспортного средства является сложность снятия и установки съемного кузова, что снижает эксплуатационные возможности транспортного средства.

Целью настоящего изобретения является расширение эксплуатационных возможностей.

Указанная цель достигается тем, что в известном транспортном средстве, содержащем раму шасси, имеющую продольные наклонные направляющие с уклоном вниз в сторону выгрузки, на которых с возможностью продольного перемещения смонтирована несущая съемный кузов подвижная 25 рама с передним упором для взаимодействия с передней торцовой стенкой съемного кузова, на котором установлены опорные стойки и фиксаторы для закрепления подвижной рамы на раме шасси транспортного средства в транспортном положении, упомянутая подвижная рама в продольном направлении выполнена клиновидной формы, а верхняя часть этой рамы параллельна горизонтальному участку рамы транспортного средства, при этом на задней торцовой части подвижной рамы смонтирован убираемый упор для взаимодействия с передней торцовой частью снятого кузова при установке подвижной рамы в транспортное по- 40 ложение во время движения транспортного средства задним ходом.

На фиг.1 показан общий вид транспортного средства (штрих-пунктирными линиями условно показан съемный кузов); на фиг.2 — сечение А-А на фиг.1; на фиг.3 — сечение Б-Б на фиг.1; на фиг.4 — вид по стрелке В на фиг.2; на фиг.5 — подготовка к съему с транспортного средства съемного кузова; на фиг.6 — процесс съема с транспортного средства кузова; на фиг.7 — вид по стрелке Г на фиг.5; на фиг.8 — процесс установки подвижной рамы в транспортное положение.

Рама шасси транспортного средства 55 имеет продольные наклонные направляющие 1 с уклоном вниз в сторону выгрузки. На раме шасси транспортного средства смонтирована подвижная рама 2, которая в продольном направлении выполнена кли-

новидной формы, а ее верхняя часть параллельна горизонтальному участку рамы транспортного средства. Подвижная рама имеет настил 3. Для исключения смещения подвижной рамы относительно рамы шасси в поперечном направлении подвижная рама оснащена боковинами 4, Г-образные выступы которых предотвращают опрокидывание последней.

В передней части подвижной рамы имеются передние неподвижные упоры 5, а на ее задней торцовой части смонтированы убираемые упоры 6.

С внутренней стороны продольных наклонных направляющих 1 рамы шасси смонтированы ограничители 7 (фиг.2,4), которые благодаря наличию дополнительных отверстий 8 могут передвигаться вдоль наклонных направляющих.

Для фиксации подвижной рамы 2 относительно рамы шасси в транспортном положении на направляющих 1 имеются крюки 9 с осями 10, взаимодействующие с пальцами 11 подвижной рамы 2 (фиг.3).

Транспортное средство работает следующим образом (фиг.5).

Для съема кузова 12 его стойки 13, оснащенные, к примеру, винтовыми упорами 14, ставятся в вертикальное положение. Винтовые упоры вывинчиваются до плотного соприкосновения с опорной поверхностью. Крюки 9 разъединяются с пальцами 11.

После этого транспортное средство начинает двигаться передним ходом (фиг.6). За счет сил трения между днищем съемного кузова и настилом 3 подвижная рама будет сдвигаться относительно рамы шасси транспортного средства. При этом между днищем съемного кузова 12 и настилом 3 образуется зазор. Подвижная рама будет сдвигаться до тех пор пока ее передние неподвижные упоры 5 не войдут в соприкосновение с ограничителями 7.

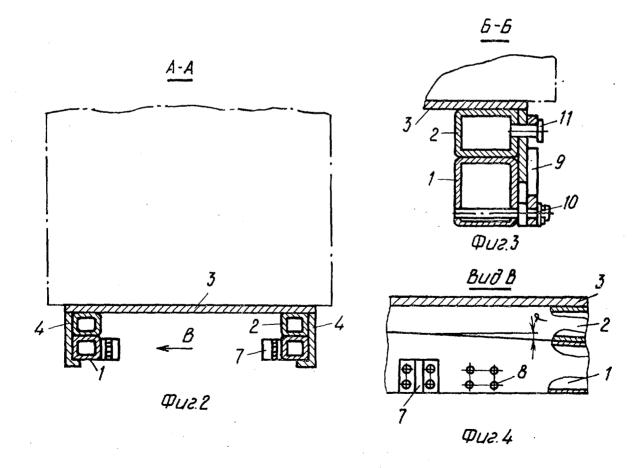
Величина зазора h (фиг.6) будет зависеть от угла наклона α (фиг.4) и расположения ограничителей 7.

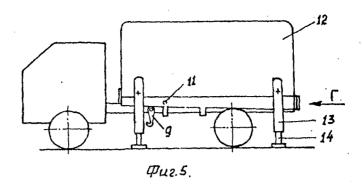
Если после съема кузова транспортное средство должно совершить холостой пробег за следующим съемным кузовом то его подвижная рама должна быть установлена в транспортное положение: Для этого убираемые упоры 6 (фиг. 1,7) устанавливаются в вертикальное положение.

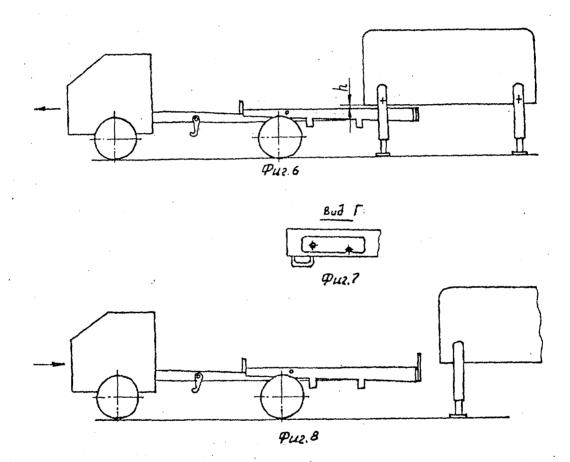
Транспортное средство с вертикально расположенными упорами 6 задним ходом приближаются к съемному кузову (фиг.8). Упоры 6 войдут в соприкосновение с торцовой стенкой кузова и подвижная рама начнет двигаться в сторону кабины транспортного средства. После чего она

фиксируется в транспортном положении в помощью крюков 9.

Если после съема кузова транспортному средству необходимо перевозить другой кузов, то транспортное средство со сдвинутой подвижной рамой задним ходом подъезжает под съемный кузов. При этом неподвижные упоры 5 начинают взаимодействовать с торцовой стенкой кузова и подвижная рама начинает сдвигаться в 10 сторону кабины. Размер h будет при этом


уменьшаться. После того, как подвижная рама займет транспортное положение запираются крюки 9, отпускаются винтовые упоры 14 и стойки 13 устанавливаются в горизонтальное положение.


Выполнение подвижной рамы в продольном направлении клиновидной формы, наличие убираемых упоров для взаимодействия со съемным кузовом позволяют расширить эксплуатационные возможности транспортного средства.


Формула изобретения

Транспортное средство со съемным кузовом, содержащее раму шасси, имеющую продольные наклонные направляющие с уклоном вниз в сторону выгрузки, на которых с возможностью продольного перемещения смонтирована несущая съемный кузов подвижная рама с передним упором для взаимодействия с передней торцовой стенкой съемного кузова, на котором установлены опорные стойки, и фиксаторы для закрепления подвижной рамы на раме шасси транспортного средства в транспортном

положении, отличающеесятем, что, с целью расширения эксплуатационных возможностей, упомянутая подвижная рама в продольном направлении выполнена клиновидной формы, а верхняя часть этой рамы параллельна горизонтальному участку рамы транспортного средства, при этом на задней торцовой части подвижной рамы смонтирован убираемый допу взаимодействия с передней торцовой частью снятого кузова при установке подвижной рамы в транспортное положение во время движения транспортного средства задним ходом.

Редактор

Составитель

М.Телеченко

Техред М.Моргентал

Корректор Н.Репская

Заказ 320

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5