#### УДК 621.311

# ИССЛЕДОВАНИЕ РЕЖИМА ЧЕТВЕРТИ ВОЛНЫ STUDY OF THE QUARTER WAVE REGIME

Н.А. Бруцкий-Стемпковский, А. В. Острейко Научный руководитель – к.т.н., доцент Старжинский А. Л. Белорусский национальный технический университет г. Минск, Республика Беларусь

N. A. Brutsky-Stempkovsky, A. V. Ostreyko

Supervisor – A. L. Starzhinsky, Candidate of Technical Science, Docent Belarusian national technical university, Minsk, Belarus

Аннотация: данная научная работа была написана в процессе создания лабораторной работы для студентов специальности «Электроэнергетические системы и сети» по дисциплине «Электропередачи». Здесь рассмотрены основные теоретические положения математической электропередачи большой протяжённости, электропередачи особенности линий протяжённостью, составляющей предложены способы исследований четверть волны, таких линий электропередачи в программной среде «MATLAB – Simulink».

**Abstact:** This scientific work was written in the process of creating a laboratory work for students of the specialty 1-43 01 02 "Electric power systems and networks" in the discipline "Power transmission". Here, the main theoretical provisions of the mathematical model of a long-distance power transmission line are considered, the features of power transmission lines with a length of a quarter of a wave are noted, methods for studying such power lines in the MATLAB-Simulink software environment are proposed.

**Ключевые слова:** электроэнергетика, передача электроэнергии, электропередачи, четверть волны.

**Keywords:** electric power industry, power transmission, power transmission, quarter wave.

#### Введение

Линия электропередачи (ЛЭП) – один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока [1].

Особую роль в энергосистемах занимают дальние и сверхдальние электропередачи, выполняющие функции межсистемных связей и магистральных передач больших потоков электроэнергии. К таким можно отнести, например, линию электропередачи Экибастуз — Кокшетау — участок уникальной высоковольтной линии электропередачи переменного тока «Сибирь — Центр» проектного напряжения 1150 кВ[2].

### Основная часть

Все процессы, происходящие в линии электропередач, имеют волновой характер. В общем случае, когда линия электропередачи питается от источника

синусоидального напряжения, эти процессы можно описать как результат наложения падающей и отражённой волн. Для напряжения можно записать:

$$U_{\Pi} = \frac{1}{2}(U_2 + I_2 Z_{\rm B})e^{\gamma l}; \tag{1}$$

$$U_{\rm o} = \frac{1}{2} (U_2 - I_2 Z_{\rm B}) e^{-\gamma l}, \tag{2}$$

где $U_n$ ,  $U_o$  – напряжение падающей и отраженной волны;

 $U_2$ — напряжение в конце электропередачи;

 $I_2$  – ток в конце электропередачи;

 $z_{e}$ — волновое сопротивление линии;

у – постоянная распространения волны;

l – расстояние от конца линии до какой-либо точки.

Аналогично для тока:

$$I_{\Pi} = \frac{1}{2} (I_2 + \frac{U_2}{Z_B}) e^{\gamma l}; \tag{3}$$

$$I_{0} = \frac{1}{2} \left( I_{2} - \frac{U_{2}}{z_{R}} \right) e^{-\gamma l}, \tag{4}$$

где $I_n$ ,  $I_o$  – ток падающей и отраженной волны.

При попарном суммировании получаем уравнения, описывающие состояние электропередачи в любой её точке. Для фазных токов и линейных напряжений уравнения имеют вид:

$$U_1 = U_2 ch\gamma l + \sqrt{3}I_2 z_{\rm B} sh\gamma l; \tag{5}$$

$$I_1 = I_2 ch\gamma l + \frac{U_2}{\sqrt{3}z_{\rm R}} sh\gamma l,\tag{6}$$

Постоянная распространения волны уопределяется:

$$\gamma = \sqrt{(r_0 + jx_0)(g_0 + jb_0)} = \beta_0 + j\alpha_0,\tag{7}$$

где $r_{\theta}$ ,  $g_{\theta}$ — активное сопротивление и активная проводимость на единицу длины линии;

 $x_0, b_0$  – индуктивное сопротивление и ёмкостная проводимость на единицу длины линии;

 $\alpha_0$  – коэффициент изменения фазы волны на единицу длины;

 $\beta_0$  – коэффициент затухания амплитуды волны на единицу длины.

Для исследования вопросов пропускной способности, перенапряжений, токов коротких замыканий для линий протяжённостью  $L \leq 2000$  км можно рассматривать вместо реальной линии – идеальную, без потерь[3]. Для такой линии удельные активные сопротивление и проводимость  $r_0 = 0$  и  $g_0 = 0$ .

После некоторых преобразований получаем:

$$U_1 = U_2 \cos \lambda + j\sqrt{3}I_2 z_{\rm B} \sin \lambda; \tag{8}$$

$$I_1 = I_2 cos \lambda + j \frac{U_2}{\sqrt{3}Z_B} sin \lambda, \tag{9}$$

где  $\lambda = \alpha l$  – волновая длина линии.

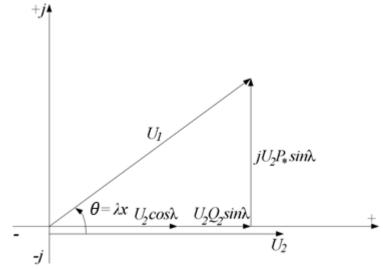



Рисунок 1 – Векторная диаграмма четвертьволновой линии

Из векторной диаграммы следует, что:  $\sin\theta = \frac{U_2 P_* \sin\lambda}{U_1}$ . После преобразований получим:

$$P = \frac{U_1 U_2}{Z_g \sin \lambda}.\tag{10}$$

При длине электропередачи l=1500 км и, соответственно, волновой длине  $\lambda=\frac{\pi}{2}$  следует записать:

$$U_1 = j\sqrt{3}I_2 z_{\scriptscriptstyle B}; \tag{11}$$

$$I_1 = j \frac{U_2}{\sqrt{3}Z_p}; (12)$$

$$P_{*max} = 1; (13)$$

$$P = \frac{U_1 U_2}{Z_{\rm B}}; \tag{14}$$

$$\sin \theta = \frac{U_2}{U_1} P_*; \tag{15}$$

$$Q_1 = Q_2 = -\frac{U_1 U_2}{Z_{\rm R}} \cos \theta;$$
 (16)

Режим работы такой электропередачи называется четвертьволновым. Из уравнений (11)-(16) следует несколько простых и важных свойств данного режима.

- 1. Токи начала и конца четвертьволновой линии не зависят друг от друга и прямо пропорциональны напряжению противоположного конца линии.
- 2. В нормальном режиме работы напряжение в конце линии не зависит от напряжения в начале линии.
- 3. В режиме короткого замыкания в конце линии  $U_1=const;\ U_2=0$ , следовательно  $I_1=0;\ I_2=j\frac{U_1}{\sqrt{3}Z_{\rm B}}$ ,и такой режим для четвертьволновой линии не представляет опасности.

4. В режиме холостого хода при  $I_2=0$ , уравнение (8) запишется как  $U_1=U_2cos\lambda$ . Отсюда  $U_2=\frac{U_1}{cos\lambda}$ . Поскольку  $cos\lambda\frac{\pi}{2}=0$ , то при подаче даже небольшого напряжения на начало четвертьволновой линии, напряжение разомкнутого конца теоретически становится бесконечным. Естественно, что в реальной линии напряжение повысится до некоторого конечного значения, обычно превышающего номинальное в несколько раз:  $U_2 \to \infty$ ;  $I_1 \to \infty$ .

Следовательно, режим холостого хода для четвертьволновой линии очень опасен, так как он равносилен режиму короткого замыкания для обычных линий.

Режим холостого хода опасен еще и перегрузкой генераторов, включенных в начале передачи. Из-за повышенных уровней напряжения генерируемая линией реактивная мощность становиться настолько большой, что может привести к перегреву обмоток генераторов [4].

$$\begin{array}{c|c} & \underline{I_1} & \underline{L} & \underline{I_2} & \underline{S_2} = P_2 + jQ_2 \\ \underline{U_1} & \underline{U_2} & \underline{U_2} \end{array}$$

Рисунок 2 – Схема электропередачи

Опираясь на данные теоретические рассуждения, нами была разработана лабораторная работа «Исследование режима четверти волны» по дисциплине «Электропередачи» для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети». Студенту, выполняющую данную лабораторную работу, предлагается ознакомиться с краткими теоретическими сведениями по данной теме и выполнить некоторые измерения и расчёты в среде МАТLAB – Simulink. Результаты заносить в таблицу 1.

Приведем пример выполнения лабораторной работы и проанализируем полученные результаты.

Таблица 1 – Результаты измерений и расчётов (начало).

| No | λ                | $P_2/P_{\scriptscriptstyle  m HaT}$ | $U_1$ , кВ | $U_2$ , кВ | <i>I</i> <sub>1</sub> , A | <i>I</i> <sub>2</sub> , A | $\frac{U_2}{I_1}$ , $\kappa B/A$ | $\frac{U_1}{I_2}$ , $\kappa B/A$ | heta, град. |
|----|------------------|-------------------------------------|------------|------------|---------------------------|---------------------------|----------------------------------|----------------------------------|-------------|
| 1  | $<\frac{\pi}{2}$ | 0,5                                 | 752,2      | 1362       | 2686                      | 1362                      | 0,51                             | 0,55                             | 61,23       |
| 2  |                  | 0,75                                | 750,2      | 972,5      | 1940                      | 1477                      | 0,50                             | 0,51                             | 69,9        |
| 3  |                  | 1                                   | 749,4      | 749,1      | 1519                      | 1515                      | 0,49                             | 0,49                             | 74,65       |
| 4  |                  | 1,25                                | 749,1      | 607,1      | 1257                      | 1534                      | 0,48                             | 0,49                             | 77,61       |
| 5  |                  | 1,5                                 | 748,9      | 509,7      | 1081                      | 1545                      | 0,47                             | 0,48                             | 79,63       |
| 6  | $=\frac{\pi}{2}$ | 0,5                                 | 748,1      | 1483       | 2996                      | 1505                      | 0,49                             | 0,50                             | 96,27       |
| 7  |                  | 0,75                                | 749,1      | 994        | 2008                      | 1510                      | 0,50                             | 0,50                             | 94,21       |
| 8  |                  | 1                                   | 749,4      | 747,2      | 1509                      | 1511                      | 0,50                             | 0,50                             | 93,18       |
| 9  |                  | 1,25                                | 749,6      | 598,6      | 1210                      | 1512                      | 0,49                             | 0,50                             | 92,55       |
| 10 |                  | 1,5                                 | 749,8      | 499,2      | 1009                      | 1513                      | 0,49                             | 0,50                             | 92,13       |

Таблица 1 – Результаты измерений и расчётов (продолжение).

| No | λ                | $P_2/P_{ m HaT}$ | $U_1$ , к $B$ | $U_2$ , кВ | $I_1$ , A | $I_2$ , A | $\frac{U_2}{I_1}$ , $\kappa B/A$ | $\frac{U_1}{I_2}$ , $\kappa B/A$ | $\theta$ , град. |
|----|------------------|------------------|---------------|------------|-----------|-----------|----------------------------------|----------------------------------|------------------|
|    |                  |                  |               |            |           |           | <sup>1</sup> 1                   | 12                               |                  |
| 11 |                  | 0,5              | 745,7         | 1251       | 2394      | 1262      | 0,52                             | 0,59                             | 128,4            |
| 12 |                  | 0,75             | 748,2         | 943,9      | 1846      | 1428      | 0,51                             | 0,52                             | 117,8            |
| 13 | $>\frac{\pi}{2}$ | 1                | 749,5         | 745,7      | 1501      | 1504      | 0,50                             | 0,50                             | 111,6            |
| 14 |                  | 1,25             | 750,2         | 612,3      | 1277      | 1544      | 0,48                             | 0,49                             | 107,6            |
| 15 |                  | 1,5              | 750,6         | 517,9      | 1124      | 1567      | 0,46                             | 0,48                             | 104,8            |

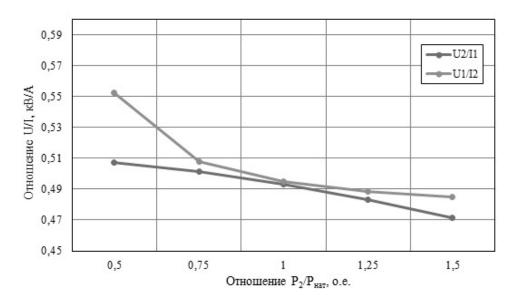



Рисунок 3 — Отношение  $U\!/\!I$  при волновой длине линии электропередачи менее четверти волны ( $L=1200~{\rm km}$ )

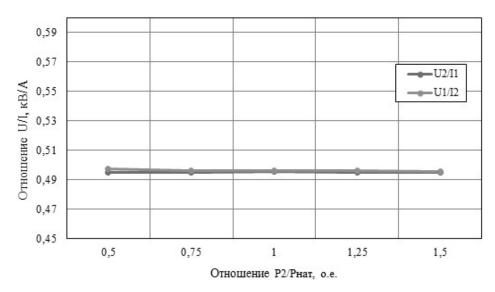



Рисунок 4 — Отношение  $U\!/\!I$  при волновой длине линии электропередачи равной четверти волны ( $L\!=\!1500$  км)

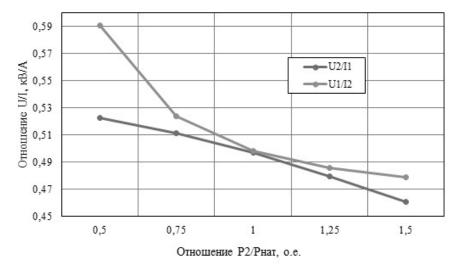



Рисунок 5 — Отношение U/I при волновой длине линии электропередачи более четверти волны (L=1800 км)

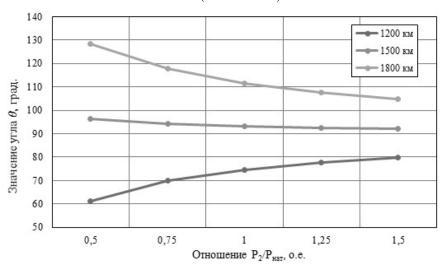



Рисунок 6 – Значение угла θ при различных длинах линии электропередачи

#### Заключение

Электропередачи длиной четверть волны обладают следующими свойствами:

- 1. Отношение напряжения  $U_2$ конца линии к току $I_1$  начала линии постоянно для любой нагрузки при четвертьволновой длине электропередачи. При иной длине отношение изменяется.
- 2. Аналогичным образом ведёт себя отношение напряжения  $U_1$  начала линии к току $I_2$  конца линии.
- 3. В режиме четверти волны ток  $I_2$  конца линии не меняется при изменении нагрузки  $P_2$ . В иных режимах ток увеличивается с ростом нагрузки, что логично.

## Литература

- 1. Линия электропередачи [Электронный ресурс]/ линия электропередачи. Режим доступа: https://ru.wikipedia.org/wiki/Линия\_электропередачи/. Дата доступа: 01.04.2021.
- 2. Единственная линия электропередачи 1150 кВ [Электронный ресурс]/единственная линия электропередачи 1150 кВ. Режим доступа:

https://pikabu.ru/story/edinstvennaya\_liniya\_yelektroperedachi\_1150\_kv\_5646567/. – Дата доступа: 01.04.2021.

- 3. Поспелов Г. Е., Федин В.Т. Передача энергии и электропередачи: Учеб. пособие для студентов энергет. специальностей вузов / Г. Е. Поспелов, В. Т. Федин. Мн.: Адукацыя і выхаванне, 2003. 544 с: ил.
- 4. Веников В.А., Рыжов Ю.П. Дальние электропередачи переменного и постоянного тока: Учебн. Пособие для вузов. М.: Энергоатомиздат, 1985.-272с., ил.