УДК 621.3

CИСТЕМЫ ЭНЕРГЕТИЧЕСКОЙ УТИЛИЗАЦИИ ОТХОДОВ THERMONUCLEAR ENERGY AS A STEP INTO THE FUTURE

С. А. Шиманович

научный руководитель – В. А. Ханевская, инженер Белорусский национальный технический университет, г. Минск, Республика Беларусь

haneuskaya@bntu.by

S.A. Shimanovich

Supervisor – V. A. Khanevskaya, Engineer Belarusian National Technical University, Minsk, Belarus

Аннотация: в данной работе рассматривается технология "Отходы в энергию", а также плюсы и минусы данной технологии.

Abstract: In this article we observe the "Waste to energy" technology and it's pros and cons

Ключевые слова: утилизация отходов, энергия, экология

Keywords: Recycling, energy, ecology

Введение

Благодаря технологии "Отходы в энергию" утилизация отходов станет намного легче. Размещение на полигонах твёрдых бытовых, промышленных, медицинских и других отходов уменьшится. Полученная энергия станет дополнительным источником прибыли, что приведёт к экономической и экологической выгоде.

Основная часть

Система энергетической утилизации отходов (WTE)— это процесс получения энергии в виде электричества или тепла благодаря сжиганию отходов [2].

Инсинерация — сжигание органических отходов при высоких температурах, она является самой распространенным видом реализации WTE. Сжигание отходов может привести к образованию загрязняющих веществ, но данный метод очень эффективен и безопасен, так как объёмы сжигаемых отходов сводятся к минимуму, а благодаря многоступенчатой системе газоочистки загрязнение окружающей среды сводится к минимуму.

В таких системах необходима хорошо спроектированная система сжигания. Рассмотрим основные технологии, используемые для получения энергии из отходов:

1. Термическая переработка на решётке. Чаще всего используется в мире. Благодаря приобретенному опыту в строительстве и эксплуатации за все время технология считается очень надёжной. Инсинерация стала считаться экологически чистой технологией, после существенных улучшений системы очистки дымовых газов[1]. Общая схема современной системы термической переработке на решётке (рисунок 1).

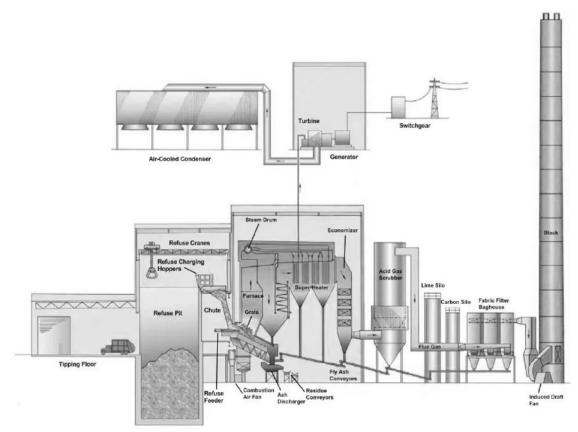
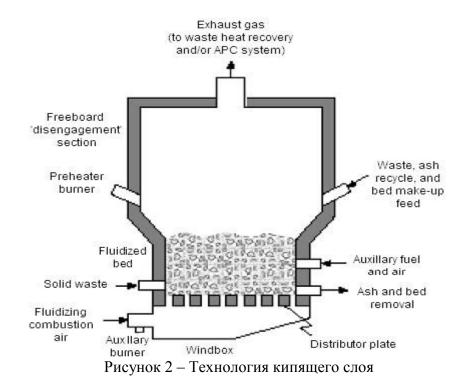



Рисунок 1 – Технология термической переработки на решётке

2. Технология кипящего слоя. Она может быть как статичной, так циркулирующей [1]. Эта технология используется чаще всего для переработки осадка городских сточных вод и твёрдых бытовых отходов. Система для очищения дымовых газов и использование энергии предусмотрены в этой технологии. Общая схема системы кипящего слоя (рисунок 2).

3. Вращающаяся печь. В этой технологии перерабатывают опасные медицинские, биологические и индустриальные отходы. Благодаря высоким температурам можно производить полное уничтожение вредоносных микроорганизмов. Уровень выброса будет мал из-за низкого уровня кислорода на выходе. Общая схема системы с вращающейся печью (рисунок 3).

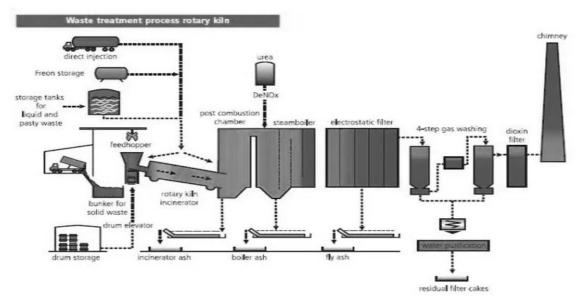


Рисунок 3 - Технология системы с вращающейся печью

4. Газификация. Эта технология широко известна, но из-за ряда минусов она не пользуется спросом. При процессе газификации появляется высокий уровень СО2, что приводит к выбросу загрязнений в атмосферу, теплота сгорания вырабатываемого газа мала, происходит окисление углеводородов [1]. Общая схема системы высокотемпературной газификации (рисунок 4).

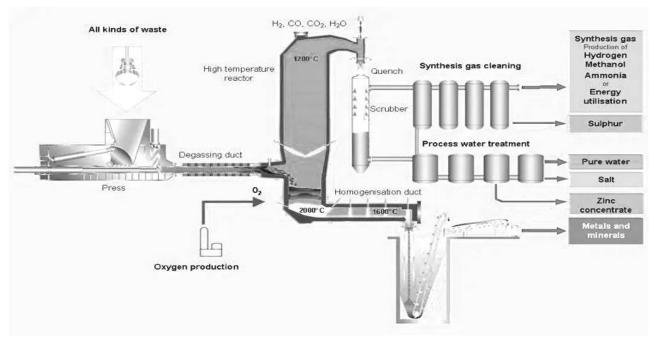


Рисунок 4 – Технологии системы высокотемпературной газификации

5. Газификация в плазменной дуге. Эту технологию используют для переработки радиоактивных отходов. В ней имеются как плюсы, так и минусы. Установка требует много затрат энергии на переработку отходов, а маленький уровень энергии на выходе установки не позволяет даже думать об энергетической эффективности. Большие температуры хороши для утилизации вредных отходов, но управление такой температурой очень затруднительно. Общая схема системы газификации в плазменной дуге (рисунок 5).

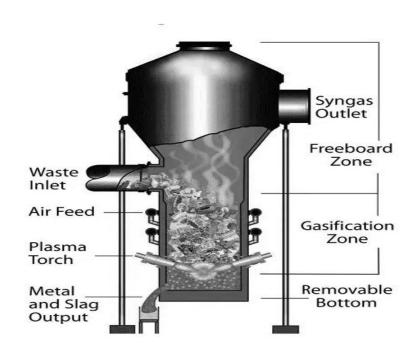


Рисунок 5 – Технология системы газификации в плазменной дуге

6. Пиролиз. Эта технология была придумана давно и её используют в химической промышленности, но недавно её начали использовать и для переработки отходов. В данной технологии присутствует множество плюсов: очень маленькое окисление отходов, выбросы опасных веществ отсутствуют, производит большое количество синтетического природного газа, а его теплотворность высока, производится чистый газ, чтобы использовать его напрямую в генераторах. Эта технология является самой экологически чистой, простой и модульной технологией утилизации [1]. Единственный минус — это то, что она мало известна на рынке. Общая схема процесса пиролиза (рисунок 6).

Pyrolysis System Vapor diagram Feedstock bin Stack condenser Pressurized gas storage Vacuum amua Gasified product Condensed liquid vapors Automatic feedstock auger / transfer system Super-low Combustion chamber NOx burner Natural Ash discharge gas supply

Pyrolysis Process

Рисунок 6 – Технология процесса пиролиза

Заключение

В наше время в мире используется около 2500 заводов WTE. Но не все хотят переходить к этой системе утилизации отходов. Из-за нехватки информации появляется недоверие к строительству таких заводов, да и к этой отрасли в целом. Но это дело времени и уже в недалёком будущем каждый желающий сможет увидеть своими глазами весь процесс, — такие заводы станут не только экологической частью нашей инфраструктуры, но и объектами индустриального туризма.

Литература

- 1. Ростек [Электронный ресурс] / Ростек. Режим доступа: https://rostec.ru/news/energichnaya-utilizatsiya-kak-prevratit-otkhody-v-energiyu/. Дата доступа: 19.04.2021
- 2. Все италиа [Электронный ресурс] / Все италиа. Режим доступаhttp://www.bceitalia.com/ru/product-applications/waste-to-energy-systems-ru/–Дата доступа: 19.04.2021