СНи
П 41–01–2003 «Отопление, вентиляция и кондиционирование», Москва
 2004

- 3. Капсудина, А. Ю. Анализ систем перемешивающей и вытесняющей вентиляции (предпосылки для выбора) / А. Ю. Капсудина. Текст : непосредственный // Молодой ученый. 2018. № 15 (201). С. 114-118. URL: https://moluch.ru/archive/201/49510/ (дата обращения: 12.04.2021).
- 4. А. М. Живов, «Системы вытесняющей вентиляции для промышленных зданий. Типы, область применения, принципы проектирования»/ А. М. Живов, Е. О. Шилькрот, Gerald Riskowski, Peter V. Nielsen, //ABOK, 2001, № 5, с. 36–46;
- 5. Капсудина, А. Ю. Анализ систем перемешивающей и вытесняющей вентиляции (предпосылки для выбора) / А. Ю. Капсудина. Текст : непосредственный // Молодой ученый. 2018. № 15 (201). С. 114-118. URL: https://moluch.ru/archive/201/49510/ (дата обращения: 16.04.2021).

ТЕХНОЛОГИЯ FLOEFD HVAC MODULE: МОДЕЛИРОВАНИЕ СИСТЕМ ВЕНТИЛЯЦИИ

Артюхов В.А.,

Научный руководитель: Климович С.В. Белорусский национальный технический университет

<u>FloEFD</u> — программное решение для проведения гидрогазодинамического анализа, встроенное в программную среду таких САПР как: CATIA V5, PTC Creo, Siemens NX, <u>Solid Edge</u>, SOLIDWORKS. Пользовательский интерфейс и справка FloEFD доступны для пользователя на русском языке.

Программный продукт модульного типа <u>FloEFD</u> предназначен для инженеров-конструкторов, не требует специализированных знаний в проведении гидрогазодинамического анализа. С помощью программы инженер-конструктор может проанализировать конструкцию на ранних этапах проектирования, обнаружить и исправить ошибки, то есть ускорить жизненный цикл изделия.

FloEFD HVAC Module – это дополнительный модуль к программному продукту <u>FloEFD</u>, позволяет провести моделирование систем вентиляции, отопления и кондиционирования помещений для оценки комфорта нахождения человека в помещении, рисунок 1.

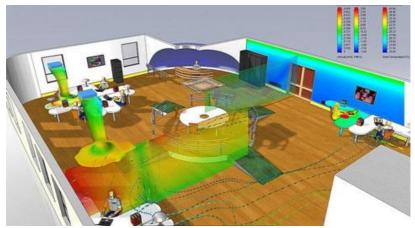


Рисунок 1.Визуализация моделирования систем вентиляции, отопления и кондиционирования помещений в FloEFD HVAC Module

Расчеты FloEFD проводятся на базе системы уравнений Навье-Стокса. Использование одной системы уравнений позволяет провести анализ ламинарных и турбулентных потоков. Также возможен переход из ламинарного в турбулентное состояние или наоборот.

Функциональные возможности FloEFD HVAC Module:

- Оценка параметров комфортности.
- Модель излучения Дискретные Ординаты (ДО).
- Расчет распространения загрязняющих веществ в воздухе.
- Библиотека строительных материалов.

Оценка параметров комфортности происходит на основании следующих параметров:

- средний оценочный балл качества внутренней среды, индекс комфортности по Фангеру: Predicted Mean Vote (PMV). Индекс показывает среднее значение мнения большой группы лиц по семибалльной шкале теплоощущения.

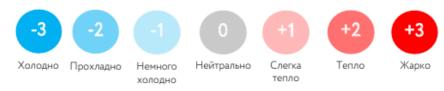


Рисунок 2. Семибальная шкала теплоощущения по Фангеру

- рогнозируемый процент людей, ощущающих тепловой дискомфорт: Predicted Percent Dissatisfied (PPD показатель теплового дискомфорта или неудовлетворенности людей, выражается в процентном отношении людей, которым при данных условиях слишком холодно или слишком жарко;
- расчётная комфортная температура (с учётом радиационного и конвективного теплообмена: Орегаtive Temperature однородная температура воображаемого черного тела, отдающего в окружающую среду столько же теплоты за счет радиационного излучения и конвекции, условный показатель, зона комфорта определяется с точки зрения целого ряда рабочих температур, которые обеспечивают приемлемые тепловые условия окружающей среды;
- оценочная температура— разность между температурой в точке рассматриваемой зоны и температурой окружающей среды, под "оценкой" подразумевается ощущение человеком тепла или холода в какой-либо части тела в зависимости от движения воздуха и температуры воздуха;
- показатель воздух распределения, коэффициента воздушной диффузии: Air Diffusion Performance Index (ADPI);
- локальное качество воздуха: Local Air Quality Index (LAQI).

Шкала определения локального качества воздуха

Эффективность удаления загрязнений: Contaminant Removal Effectiveness (CRE). Если происходит полное перемешивание воздуха в помещении, то CRE=1. Значение выше 1 означают, что система вентиляции работает удовлетворительно. Значение ниже 1 говорит о неудовлетворительной работе системы вентиляции.

Угол прохождения потока: Flow Angle (X, Y и Z). Этот параметр показывает отклонение потока от расчетного направления. За расчетное принимается направление одной из осей выбранной системы координат. Допустимым считается отклонение на угол менее 15°.

Дискомфорт от сквозняка. Прогнозируемое процентное отношение людей которые могут ощущать дискомфорт от сквозняка.

- В базовую лицензию <u>FloEFD</u> включены следующие параметры оценки комфорта:
 - показатель локального значения времени действия воздуха среднее время прохождения воздухом расстояния от входа до какой-либо точки Local Mean Age (LMA)
 - показатель локального воздухообмена Local Air Change Index (LACI).
 - безразмерный LMA.

Функциональные возможности FloEFD HVAC Module по расчету:

- сложных потоков в помещениях (принудительная и естественная конвекция).
- модели вентиляции, комфорта и промышленная гигиена.
- воздушного потока вокруг и сквозь здания.
- перевозка химических или биологических средств.
- моделирование относительной влажности и конденсации (H_2O в воздухе).
- моделирование потоков газовых примесей (загрязнение, выбросы выхлопных газов).
- оптимизация перепада давления в оборудовании.
- теплопередача (теплообменники) в том числе с разными фазами в отдельных полостях (например, газ / жидкость).
- определение сил и крутящего момента на подвижных деталях.
- определение расхода с помощью вентиляторов, насосов и определение расхода через вентиляционные отверстия.
- моделирование солнечного излучения, поверхностного излучения.
- время прохождения частиц (чистые помещения).

Данный программный продукт является мощным средством САПР, необходимым инженерам занимающимся проектированием систем вентиляции, отопления и кондиционирования помещений для оценки эффективности предлагаемых решений (рис.3).

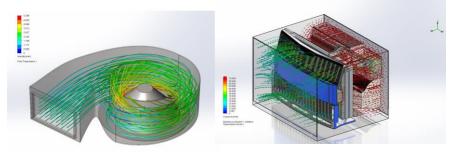


Рисунок 3. FloEFD решения по тепловому анализу

Литература

- 1. Портал «КАДИС»: FloEFD HVAC Module [Электронный ресурс] /. URL: https://www.cad-is.ru/blog_post/floefd-hvac-module-modelirovanie-sistem-ventilyacii— Дата доступа: 24.03.2021
- 2. Компания «Саровский Инженерный Центр»: FloEFD [Электронный ресурс] /. URL: https://www.saec.ru/floefd/ Дата доступа: 24.03.2021

3. Группы компаний CSoft : FloEFD [Электронный ресурс] /. – URL:https://www.csoft.ru/actions/webconference/webconference_20210310.ht ml- Дата доступа: 24.03.2021

СЕКЦИЯ «ПОЛИТОЛОГИЯ, ИДЕОЛОГИЯ И СОЦИОЛОГИЯ»

УДК 32.321

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭФФЕКТИВНОСТИ ПОЛИТИЧЕСКОЙ ВЛАСТИ В СССР И КНР В 1970 - 1990 ГОДАХ

Барановский Е. К.

Научный руководитель: ст. преподаватель Дайняк Е. Н. Белорусский национальный технический университет

В данной работе исследуется эффективность политической власти в СССР и КНР на основе данных статистики в 1970-1990 гг. Цель данной работы — показать различия в эффективности правления двух стран с одинаковым политическим режимом, выбравших, однако, разные схемы развития — КНР открылась для частной собственности и иностранного капитала в 1970-е, СССР же оставался с монопольно господствующей государственной собственностью вплоть до перестройки.

В 1970-е годы демографическая обстановка в КНР была подорвана Культурной Революцией, в СССР же была стабильна. За изучаемый период в КНР наблюдалось понижение уровней как смертности, так и рождаемости, а также рост продолжительности жизни, что свидетельствует о развитии здравоохранения и общества в целом (см. таблицу 1). В СССР же наблюдаем повышение смертности при незначительном спаде рождаемости и росте средней продолжительности жизни.

Таблица 1: Демографическая ситуация

	CCCP	CCCP	KHP	КНР
	1970	1990	1970	1990
Общая численность, млн. чел.	242	294	818	1135
Смертность, на тыс. чел.	8.9	12.1	10.6	6.7
Рождаемость, на тыс. чел.	14.7	13.6	36.4	21.6
Ср. продолжительность жизни, лет	68,9	69.2	59,1	69.1

За изучаемый период заметен рост средней заработной платы в долларовом эквиваленте в обоих странах, однако, с учетом инфляции (ок.