Show simple item record

dc.contributor.authorTang, Yiru
dc.contributor.authorZhao, Diru
dc.contributor.authorGourinovitch, A.ru
dc.coverage.spatialМинскru
dc.date.accessioned2023-11-11T08:51:20Z
dc.date.available2023-11-11T08:51:20Z
dc.date.issued2023
dc.identifier.citationTang, Yi. Mask-embedding and feature-fused network for medical image segmentation / Yi Tang, Di Zhao, A. Gourinovitch // Беларусь-Китай: контуры инновационно-технологического сотрудничества : сборник материалов научно-практической конференции (Минск, 19-20 октября 2023 г.) // Республиканское инновационное унитарное предприятие «Научно-технологический парк БНТУ «Политехник» ; сост. М. А. Войтешонок. – Минск : БНТУ, 2023. – С. 65-66.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/137125
dc.description.abstractMedical image segmentation has a vital role in disease diagnosis and treatment. The feature enhancement module and a mask embedding block for medical image segmentation is proposed. This method utilizes an encoder-decoder architecture with attention mechanism and residual connections to adaptively adjust the importance of each layer of features. The proposed network achieves stronger feature transfer and reconstruction, enhancing multi-scale expressive capabilities and context-awareness иy introducing dense skip connections Experimental results on three datasets demonstrate significant improvements in segmentation accuracy and robustness, particularly in handling segmentation details and boundaries.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleMask-embedding and feature-fused network for medical image segmentationru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record