dc.contributor.author | Tang, Yi | ru |
dc.contributor.author | Zhao, Di | ru |
dc.contributor.author | Gourinovitch, A. | ru |
dc.coverage.spatial | Минск | ru |
dc.date.accessioned | 2023-11-11T08:51:20Z | |
dc.date.available | 2023-11-11T08:51:20Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Tang, Yi. Mask-embedding and feature-fused network for medical image segmentation / Yi Tang, Di Zhao, A. Gourinovitch // Беларусь-Китай: контуры инновационно-технологического сотрудничества : сборник материалов научно-практической конференции (Минск, 19-20 октября 2023 г.) // Республиканское инновационное унитарное предприятие «Научно-технологический парк БНТУ «Политехник» ; сост. М. А. Войтешонок. – Минск : БНТУ, 2023. – С. 65-66. | ru |
dc.identifier.uri | https://rep.bntu.by/handle/data/137125 | |
dc.description.abstract | Medical image segmentation has a vital role in disease diagnosis and treatment. The feature enhancement module and a mask embedding block for medical image segmentation is proposed. This method utilizes an encoder-decoder architecture with attention mechanism and residual connections to adaptively adjust the importance of each layer of features. The proposed network achieves stronger feature transfer and reconstruction, enhancing multi-scale expressive capabilities and context-awareness иy introducing dense skip connections Experimental results on three datasets demonstrate significant improvements in segmentation accuracy and robustness, particularly in handling segmentation details and boundaries. | ru |
dc.language.iso | en | ru |
dc.publisher | БНТУ | ru |
dc.title | Mask-embedding and feature-fused network for medical image segmentation | ru |
dc.type | Working Paper | ru |