Show simple item record

dc.contributor.authorLi, Haoru
dc.contributor.authorKaiyu, Wangru
dc.contributor.authorJun, Maru
dc.contributor.authorXunhuan, Renru
dc.coverage.spatialМинскru
dc.date.accessioned2024-01-23T11:03:51Z
dc.date.available2024-01-23T11:03:51Z
dc.date.issued2023
dc.identifier.citationMultiple sensors / Hao Li [et al.] // Новые горизонты - 2023 : сборник материалов X Белорусско-Китайского молодежного инновационного форума, 9-10 ноября 2023 года / Белорусский национальный технический университет. – Минск : БНТУ, 2023. – Т. 1. – С. 130-132.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/139819
dc.description.abstractThe paper discusses an advanced human fall detection algorithm that utilizes data from multiple sensors, specifically acceleration sensors and video sensors, to enhance fall risk management for high-risk groups like the elderly and those with limited mobility. The key innovation in this research is the integration of multiple sensors, which enhances the accuracy and reliability in differentiating between genuine falls and non-fall activities. This advancement significantly enhances the safety of individuals who are at a high risk of falling.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleMultiple sensorsru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record