dc.description.abstract | Использование информационных технологий и, в частности, информационных обучающих систем увеличивает возможности как преподавателя, так и обучаемого, в достижении своих целей в образовательном процессе, учитывая индивидуальные характеристики каждого и предоставляя возможности непрерывного образования. Несмотря на большое количество исследований в этой области и очевидные преимущества таких систем, их использование пока ограничено. Одной из главных причин здесь является использование точных количественных методов в такой сложно-структурированной и нечеткой области как учебный процесс. При проектировании информационных обучающих систем разработчики сталкиваются с проблемой моделирования знаний, которые условно могут быть разделены на две категории: предметные и персональные. Предметные знания определяются программой обучения и представляют знания эксперта (преподавателя) о составе и структуре учебного предмета. Персональные знания позволяют определить степень изученного материала обучаемым. Эти знания динамичные, изменяются в процессе обучения и предназначены для адаптации информационных обучающих систем к конкретному обучаемому. В настоящее время существует большое количество моделей представления знаний, среди которых наиболее используемыми являются логические, продукционные, сетевые, фреймовые и математические. Главными преимуществам математической модели являются точность, работа с абстракциями, передача информации логически однообразным способом. Математическая модель представления знаний на основе теории нечетких множеств позволяет, в отличие от остальных, учесть семантическую неопределенность оценивания экспертом (преподавателем) степень подготовки обучаемого. | ru |