Show simple item record

dc.contributor.authorZenkevich, E. I.en
dc.contributor.authorBorczyskowski, C. vonen
dc.contributor.authorShulga, A. M.en
dc.contributor.authorBachilo, S. M.en
dc.contributor.authorRempel, U.en
dc.contributor.authorWillert, A.en
dc.date.accessioned2017-05-26T12:53:46Z
dc.date.available2017-05-26T12:53:46Z
dc.date.issued2002
dc.identifier.citationSelf-assembled nanoscale photomimetic models: structure and related dynamics / E. I. Zenkevich [et al.] // Chemical Physics. – 2002. – Vol. 275, № 1-3. – P. 185-209.en
dc.identifier.urihttps://rep.bntu.by/handle/data/30175
dc.description.abstractUsing static and time-resolved measurements, dynamics of non-radiative relaxation processes have been studied in self-assembled porphyrin triads of various geometry, containing the main biomimetic components, Zn–porphyrin dimers, free-base extra-ligands (porphyrin, chlorin or tetrahydroporphyrin), and electron acceptors A (quinone or pyromellitimide). The strong quenching of the dimer fluorescence is due to energy and sequential electron transfer (ET) processes to the extra-ligand (~0.9–1.7 ps), which are faster than a slower ET (34–135 ps) from the dimer to covalently linked A in toluene at 293 K. The extra-ligand S₁-state decay (τₛ = 940–2670 ps) is governed by competing processes: a bridge (dimer) mediated long-range (r_DA = 18–24 Å) superexchange ET to an acceptor, and photoinduced hole transfer from the excited extra-ligand to the dimer followed by possible superexchange ET steps to low-lying charge transfer states of the triads. The subsequent ET steps dimer → monomer → A taking place in the triads, mimic the sequence of primary ET reactions in photosynthetic reaction centers in vivo. © 2002 Elsevier Science B.V. All rights reserved.en
dc.language.isoen_USen
dc.titleSelf-assembled nanoscale photomimetic models: structure and related dynamicsen
dc.typeArticleru
dc.identifier.doi10.1016/s0301-0104(01)00516-xen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record