Show simple item record

dc.contributor.authorChenchen, Sunen
dc.contributor.authorDerong, Shenen
dc.coverage.spatialМинскru
dc.date.accessioned2018-04-27T13:06:13Z
dc.date.available2018-04-27T13:06:13Z
dc.date.issued2015
dc.identifier.citationChenchen, Sun. Entity resolution approaches for data quality / Chenchen Sun, Derong Shen // Новые горизонты - 2015 : сборник материалов Белорусско-Китайского молодежного инновационного форума, 26–27 ноября 2015 г. – Минск : БНТУ, 2015. – С. 14-15.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/40767
dc.description.abstractEntity resolution is a key aspect of data quality, identifying which records correspond to the same real world entity in data sources. Entity resolution is a hot topic in both research communities and industries. We introduce three approaches to solve different aspects of entity resolution. The first approach learns entity resolution classifiers with genetic algorithm and active learning. The second approach proposes a solution for joint entity resolution. The third approach makes match decision for unsupervised entity resolution by graph clustering. All the three approaches are effective in entity resolution tasks.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleEntity resolution approaches for data qualityru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record