Show simple item record

dc.contributor.authorGong, Huaru
dc.contributor.authorYu, Xiaoyeru
dc.contributor.authorLiu, Dalongru
dc.contributor.authorCui, Mengyaru
dc.coverage.spatialМинскru
dc.date.accessioned2021-06-17T06:08:00Z
dc.date.available2021-06-17T06:08:00Z
dc.date.issued2021
dc.identifier.citationResearch on vehicle detection based on visible light and infrared fusion = Научная секция «информационные технологии. Big data. Робототехника. Искусственный интеллект» / Hua Gong [и др.] // II Китайско-белорусский молодежный конкурс научно-исследовательских и инновационных проектов : сборник материалов конкурса, 20-21 мая 2021 г. / Белорусский национальный технический университет ; Научно-технологический парк БНТУ «Политехник» ; Институт Конфуция по науке и технике БНТУ. – Минск : БНТУ, 2021. – С. 17.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/94734
dc.description.abstractCombining the gamma transform with Sobel edge detection method, an image enhancement method is designed. The improved Mask R-CNN infrared target detection algorithm based on image enhancement network is proposed. This algorithm is introduced into the Mask R-CNN network based on the decrease of learning rate. Aiming at the limitation of image captured by single sensor, a new target detection algorithm based on decision-level fusion is proposed. This algorithm combines visible light detection with infrared detection. Experiments show that the infrared target detection accuracy is improved by 4.48% after the improved algorithm. The target detection results at decision level are 5.49%~33.80% higher than those of single sensor imaging.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleResearch on vehicle detection based on visible light and infrared fusionru
dc.title.alternativeНаучная секция «информационные технологии. Big data. Робототехника. Искусственный интеллект»ru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record