dc.contributor.author | Gong, Hua | ru |
dc.contributor.author | Yu, Xiaoye | ru |
dc.contributor.author | Liu, Dalong | ru |
dc.contributor.author | Cui, Mengya | ru |
dc.coverage.spatial | Минск | ru |
dc.date.accessioned | 2021-06-17T06:08:00Z | |
dc.date.available | 2021-06-17T06:08:00Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Research on vehicle detection based on visible light and infrared fusion = Научная секция «информационные технологии. Big data. Робототехника. Искусственный интеллект» / Hua Gong [и др.] // II Китайско-белорусский молодежный конкурс научно-исследовательских и инновационных проектов : сборник материалов конкурса, 20-21 мая 2021 г. / Белорусский национальный технический университет ; Научно-технологический парк БНТУ «Политехник» ; Институт Конфуция по науке и технике БНТУ. – Минск : БНТУ, 2021. – С. 17. | ru |
dc.identifier.uri | https://rep.bntu.by/handle/data/94734 | |
dc.description.abstract | Combining the gamma transform with Sobel edge detection method, an image enhancement
method is designed. The improved Mask R-CNN infrared target detection algorithm based on image enhancement network is proposed. This algorithm is introduced into the Mask R-CNN network based on the decrease of learning rate. Aiming at the limitation of image captured by single sensor, a new target detection algorithm based on decision-level fusion is proposed. This algorithm combines visible light detection with infrared detection. Experiments show that the infrared target detection accuracy is improved by 4.48% after the improved algorithm. The target detection results at decision level are 5.49%~33.80% higher than those of single sensor imaging. | ru |
dc.language.iso | en | ru |
dc.publisher | БНТУ | ru |
dc.title | Research on vehicle detection based on visible light and infrared fusion | ru |
dc.title.alternative | Научная секция «информационные технологии. Big data. Робототехника. Искусственный интеллект» | ru |
dc.type | Working Paper | ru |