dc.contributor.author | Kulinich, R. | ru |
dc.contributor.author | Sednin, U. A. | ru |
dc.contributor.author | Bachirou, G. L. | ru |
dc.contributor.author | Yong, Shuai | ru |
dc.coverage.spatial | Минск | ru |
dc.date.accessioned | 2021-06-17T06:08:15Z | |
dc.date.available | 2021-06-17T06:08:15Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Short-term forecasting of energy generation from solar power plants, using neural network technologies in the Republic of Belarus = Краткосрочное прогнозирование генерации энергии солнечных электростанций с использованием технологий нейронных сетей в Республике Беларусь / R. Kulinich [и др.] // II Китайско-белорусский молодежный конкурс научно-исследовательских и инновационных проектов : сборник материалов конкурса, 20-21 мая 2021 г. / Белорусский национальный технический университет ; Научно-технологический парк БНТУ «Политехник» ; Институт Конфуция по науке и технике БНТУ. – Минск : БНТУ, 2021. – С. 20. | ru |
dc.identifier.uri | https://rep.bntu.by/handle/data/94869 | |
dc.description.abstract | Artificial Intelligence consist attribute of science and computer that creates the system or program or any machines perform the Intelligent and Imaginative functions of a human, independently and solution of problems which are able to make some actions. Basic areas of application are smart grids, electricity trading, the sector coupling of electricity, heating and transport etc. Prerequisites for a wide using of AI in the energy system are correspondingly large set of data that is evaluable and the digitalization of the energy sector. AI makes the energy industry more efficient and secure by analyzing and evaluating the data volumes. The main aim of AI and producing energy is creating system, which will be able to make predictions of solar energy resources in definite place. Data massive will be collected and separated on few types. The results shows “future” time: what amount of energy “we” can get in certain period of time in certain place. I use 2 points, which situated in different places (active solar power station); 1 square meter (kW-hr/m^2/day) by solar panel. | ru |
dc.language.iso | en | ru |
dc.publisher | БНТУ | ru |
dc.title | Short-term forecasting of energy generation from solar power plants, using neural network technologies in the Republic of Belarus | ru |
dc.title.alternative | Краткосрочное прогнозирование генерации энергии солнечных электростанций с использованием технологий нейронных сетей в Республике Беларусь | ru |
dc.type | Working Paper | ru |